• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 1
    Jan.  2023
    Turn off MathJax
    Article Contents
    Zhao Qian, Guo Qinghai, Guo Wei, 2023. An Analysis Method of Thiotungstates in Natural Water. Earth Science, 48(1): 376-384. doi: 10.3799/dqkx.2022.010
    Citation: Zhao Qian, Guo Qinghai, Guo Wei, 2023. An Analysis Method of Thiotungstates in Natural Water. Earth Science, 48(1): 376-384. doi: 10.3799/dqkx.2022.010

    An Analysis Method of Thiotungstates in Natural Water

    doi: 10.3799/dqkx.2022.010
    • Received Date: 2021-10-29
    • Publish Date: 2023-01-25
    • Analysis of thiotungstates in natural water is of great importance for systematically investigating the environmental geochemistry of tungsten. In this paper, a method based on a system combining reversed-phase ion pair chromatography and inductively coupled plasma mass spectrometry is proposed to simultaneously determine the concentrations of tungstate (WO42‒) and four thiotungstates (including WO3S2‒, WO2S22‒, WOS32‒ and WS42‒). The speciation analyses of these five tungsten compounds were performed by a high-resolution electrospray ionization mass spectrometer. Sulfide-rich geothermal water samples were snap frozen at -20 ℃ and transported to the laboratory. After thawing under anaerobic conditions, the five tungsten compounds were separated and determined within 30 min using optimized chromatographic and mass spectrometric conditions. The working curves were established using tungstate as the standards for the other tungsten compounds, with good linear relation (correlation coefficient R2 > 0.999) in the concentration range of 0.001-20 mg/L. The limits of detection (LOD) for tungstate, monothiotungstate, dithiotungstate, trithiotungstate and tetrathiotungstate were 0.82 µg/L, 0.34 µg/L, 0.22 µg/L, 0.79 µg/L and 0.62 µg/L, respectively. This method has the advantages of high sensitivity and good reproducibility, and provides an effective way for the detection and research of thiotungstates in natural water.

       

    • loading
    • Bidlingmeyer, B. A., Deming, S. N., Jr Price, W. P., et al., 1979. Retention Mechamism for Reversed⁃Phase Ion⁃Pair Liquid Chromatography. Journal of Chromatography A, 186: 419-434. https://doi.org/10.1016/S0021⁃9673(00)95264⁃6
      Couture, R. M., Rose, J., Kumar, N., et al., 2013. Sorption of Arsenite, Arsenate, and Thioarsenates to Iron Oxides and Iron Sulfides: A Kinetic and Spectroscopic Investigation. Environmental Science & Technology, 47(11): 5652-5659. https://doi.org/10.1021/es3049724
      Cui, M. M., Johannesson, K. H., 2017. Comparison of Tungstate and Tetrathiotungstate Adsorption onto Pyrite. Chemical Geology, 464: 57-68. https://doi.org/10.1016/j.chemgeo.2016.11.034
      Dai, M. N., Bao, Z. A., Chen, K. Y., et al., 2017. Simultaneous Measurement of Major, Trace Elements and Pb Isotopes in Silicate Glasses by Laser Ablation Quadrupole and Multi⁃Collector Inductively Coupled Plasma Mass Spectrometry. Journal of Earth Science, 28(1): 92-102. https://doi.org/10.1007/s12583⁃017⁃0742⁃8
      Guo, Q. H., Li, Y. M., Luo, L., 2019. Tungsten from Typical Magmatic Hydrothermal Systems in China and Its Environmental Transport. Science of the Total Environment, 657: 1523-1534. https://doi.org/10.1016/j.scitotenv.2018.12.146
      Guo, Q. H., Yang, C., 2021. Tungsten Anomaly of the High⁃Temperature Hot Springs in the Daggyai Hydrothermal Area, Tibet, China. Earth Science, 46(7): 2544-2554 (in Chinese with English abstract).
      Kelly, A. D. R., Lemaire, M., Young, Y. K., et al., 2013. In Vivo Tungsten Exposure Alters B⁃Cell Development and Increases DNA Damage in Murine Bone Marrow. Toxicological Sciences, 131(2): 434-446. https://doi.org/10.1093/toxsci/kfs324
      Lee, M. K., Saunders, J. A., Wilkin, R. T., et al., 2006. Geochemical Modeling of Arsenic Speciation and Mobilization: Implications for Bioremediation. ACS Symposium Series, 915: 398-413. https://doi.org/10.1021/bk⁃2005⁃0915.ch029
      Li, H. F., 2010. Comparison of Several Calculation Methods of Detection Limit. Chinese Journal of Spectroscopy Laboratory, 27(6): 2465-2469 (in Chinese with English abstract). doi: 10.3969/j.issn.1004-8138.2010.06.082
      Mamindy⁃Pajany, Y., Bataillard, P., Séby, F., et al., 2013. Arsenic in Marina Sediments from the Mediterranean Coast: Speciation in the Solid Phase and Occurrence of Thioarsenates. Soil and Sediment Contamination: An International Journal, 22(8): 984-1002. https://doi.org/10.1080/15320383.2013.770441
      Mohajerin, T. J., Helz, G. R., Johannesson, K. H., 2016. Tungsten⁃Molybdenum Fractionation in Estuarine Environments. Geochimica et Cosmochimica Acta, 177: 105-119. https://doi.org/10.1016/j.gca.2015.12.030
      Mohajerin, T. J., Helz, G. R., White, C. D., et al., 2014. Tungsten Speciation in Sulfidic Waters: Determination of Thiotungstate Formation Constants and Modeling Their Distribution in Natural Waters. Geochimica et Cosmochimica Acta, 144: 157-172. https://doi.org/10.1016/j.gca.2014.08.037
      Planer⁃Friedrich, B., Forberg, J., Lohmayer, R., et al., 2020. Relative Abundance of Thiolated Species of As, Mo, W, and Sb in Hot Springs of Yellowstone National Park and Iceland. Environmental Science & Technology, 54(7): 4295-4304. https://doi.org/10.1021/acs.est.0c00668
      Planer⁃Friedrich, B., London, J., McCleskey, R. B., et al., 2007. Thioarsenates in Geothermal Waters of Yellowstone National Park: Determination, Preservation, and Geochemical Importance. Environmental Science & Technology, 41(15): 5245-5251. https://doi.org/10.1021/es070273v
      Planer⁃Friedrich, B., Scheinost, A. C., 2011. Formation and Structural Characterization of Thioantimony Species and Their Natural Occurrence in Geothermal Waters. Environmental Science & Technology, 45(16): 6855-6863. https://doi.org/10.1021/es201003k
      Roedel, E. Q., Cafasso, D. E., Lee, K. W. M., et al., 2012. Pulmonary Toxicity after Exposure to Military⁃Relevant Heavy Metal Tungsten Alloy Particles. Toxicology and Applied Pharmacology, 259(1): 74-86. https://doi.org/10.1016/j.taap.2011.12.008
      Strigul, N., Galdun, C., Vaccari, L., et al., 2009. Influence of Speciation on Tungsten Toxicity. Desalination, 248(1-3): 869-879. https://doi.org/10.1016/j.desal.2009.01.016
      Weiss, J., Möckel, H. J., Müller, A., et al., 1988. Retention of Thio⁃ and Selenometalates in Mobile⁃Phase Ion Chromatography. Journal of Chromatography A, 439(1): 93-108. https://doi.org/10.1016/S0021⁃9673(01)81678⁃2
      Yan, K. T., Guo, Q. H., Luo, L., 2022. Methylation and Thiolation of Arsenic in Tengchong Hot Springs. Earth Science, 47(2): 622-632 (in Chinese with English abstract).
      Yang, N. F., Welch, K. A., Mohajerin, T. J., et al., 2015. Comparison of Arsenic and Molybdenum Geochemistry in Meromictic Lakes of the McMurdo Dry Valleys, Antarctica: Implications for Oxyanion⁃Forming Trace Element Behavior in Permanently Stratified Lakes. Chemical Geology, 404: 110-125. https://doi.org/10.1016/j.chemgeo.2015.03.029
      Zhuang, Y. Q., Guo, Q. H., Liu, M. L., et al., 2016. Geochemical Simulation of Thioarsenic Speciation in High⁃Temperature, Sulfide⁃Rich Hot Springs: A Case Study in the Rehai Hydrothermal Area, Tengchong, Yunnan. Earth Science, 41(9): 1499-1510 (in Chinese with English abstract).
      郭清海, 杨晨, 2021. 西藏搭格架高温热泉中钨的水文地球化学异常. 地球科学, 46(7): 2544-2554. doi: 10.3799/dqkx.2020.287
      李海峰, 2010. 检出限几种常见计算方法的分析和比较. 光谱实验室, 27(6): 2465-2469. doi: 10.3969/j.issn.1004-8138.2010.06.082
      严克涛, 郭清海, 罗黎, 2022. 腾冲热泉中砷的甲基化和巯基化过程. 地球科学, 47(2): 622-632. doi: 10.3799/dqkx.2021.105
      庄亚芹, 郭清海, 刘明亮, 等, 2016. 高温富硫化物热泉中硫代砷化物存在形态的地球化学模拟: 以云南腾冲热海水热区为例. 地球科学, 41(9): 1499-1510. doi: 10.3799/dqkx.2016.513
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(5)  / Tables(5)

      Article views (1104) PDF downloads(44) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return