• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 11
    Nov.  2022
    Turn off MathJax
    Article Contents
    Sun Meijing, Yao Yongjian, Luo Weidong, Hu Xiaosan, Zhou Jiao, Xu Ziying, Ju Dong, Liu Jie, 2022. Sedimentary Evolution Characteristics and Controlling Factors of Zhongjiannan Canyons in Northwestern South China Sea. Earth Science, 47(11): 4005-4019. doi: 10.3799/dqkx.2022.034
    Citation: Sun Meijing, Yao Yongjian, Luo Weidong, Hu Xiaosan, Zhou Jiao, Xu Ziying, Ju Dong, Liu Jie, 2022. Sedimentary Evolution Characteristics and Controlling Factors of Zhongjiannan Canyons in Northwestern South China Sea. Earth Science, 47(11): 4005-4019. doi: 10.3799/dqkx.2022.034

    Sedimentary Evolution Characteristics and Controlling Factors of Zhongjiannan Canyons in Northwestern South China Sea

    doi: 10.3799/dqkx.2022.034
    • Received Date: 2022-01-23
    • Publish Date: 2022-11-25
    • The Zhongjiannan Canyons were first discovered in the northwest of the South China Sea. At present, relevant research on its geological information has not been carried out.Based on the comprehensive use of bathymetric topographic data and two-dimensional multi-channel seismic data, in this paper it mainly analyzes the topographic and geomorphic characteristics, plane distribution and segmentation characteristics of the Zhongjiannan Canyons, finely describes the sedimentary evolution and filling structure characteristics of the Zhongjiannan Canyons, and then further discusses the controlling factors of the canyons formation. The Zhongjiannan submarine canyons is distributed between Zhongjian terrace and Zhongjianbei platform. It is composed of a main axis canyon in the west and several small branch canyons in the east. The overall trend is SE-S-SE. According to the trend turning point of the main canyon, the Zhongjiannan canyons are divided into three sections: north section, middle section and south section. The north section is dominated by erosion, the middle and south sections are mainly affected by erosion and sedimentation, and the area outside the canyon mouth in the southeast is mainly affected by sedimentation. Canyon sedimentary systems were widely distributed in the study area from Late Miocene to Quaternary, including semi-deep marine facies, delta facies, canyon/channel filling facies, slump facies, mass transported deposits and turbidite fan facies. It is revealed that the development and evolution of the submarine canyons are mainly controlled by sea level change, sediment source supply, gravity flow and bottom current. The analysis of the topography and sedimentary evolution characteristics of the canyons will have important scientific significance for the study of marine disaster geology, deep-water sedimentary system and oil and gas resources exploration in the South China Sea.

       

    • loading
    • Betzler, C., Fürstenau, J., Lüdmann, T., et al., 2013. Sea-Level and Ocean-Current Control on Carbonate-Platform Growth, Maldives, Indian Ocean. Basin Research, 25(2): 172-196. https://doi.org/10.1111/j.1365-2117.2012.00554.x
      Chen, H., Xie, X. N., Mao, K. N., et al., 2020. Depositional Characteristics and Formation Mechanisms of Deep-Water Canyon Systems along the Northern South China Sea Margin. Journal of Earth Science, 31(4): 808-819. doi: 10.1007/s12583-020-1284-z
      Chen, H. J., Cai, G. Q., Luo, W. D., et al., 2012. Features of Canyon Morphology and Their Origin in the Shenhu Area, Northern Slope of the South China Sea. Marine Geology & Quaternary Geology, 32(5): 19-26 (in Chinese with English abstract).
      Chen, J. X., Guan, Y. X., Song, H. B., et al., 2015. Distribution Characteristics and Geological Implications of Pockmarks and Mud Volcanoes in the Northern and Western Continental Margins of the South China Sea. Chinese Journal of Geophysics, 58(3): 919-938 (in Chinese with English abstract).
      Davies, R. J., Thatcher, K. E., Mathias, S. A., et al., 2012. Deepwater Canyons: An Escape Route for Methane Sealed by Methane Hydrate. Earth and Planetary Science Letters, 323-324: 72-78. https://doi.org/10.1016/j.epsl.2011.11.007
      Fyhn, M. B. W., Boldreel, L. O., Nielsen, L. H., 2009. Geological Development of the Central and South Vietnamese Margin: Implications for the Establishment of the South China Sea, Indochinese Escape Tectonics and Cenozoic Volcanism. Tectonophysics, 478: 184-214. https://doi.org/10.1016/j.tecto.2009.08.002
      Gao, H. F., Chen, L., 2006. An Analysis of Structural Framework and Formation Mechanism of Zhongjiannan Basin in the West of South China Sea. Oil & Gas Geology, 27(4): 512-516 (in Chinese with English abstract). doi: 10.3321/j.issn:0253-9985.2006.04.011
      Gao, H. F., Nie, X., Luo, W. D., 2021. "Source to Sink" Analysis of a Sea Basin: The Quaternary Deepwater Turbidite Fan System in Pearl River Valley Northwest Subbasin, Northern South China Sea. Marine Geology & Quaternary Geology, 41(2): 1-12 (in Chinese with English abstract).
      Gong, C. L., Wang, Y. M., Zhu, W. L., et al., 2013. Upper Miocene to Quaternary Unidirectionally Migrating Deep-Water Channels in the Pearl River Mouth Basin, Northern South China Sea. AAPG Bulletin, 97(2): 285-308. https://doi.org/10.1306/07121211159
      Haq, B. U., Hardenbol, J., Vail, P. R., 1987. Chronology of Fluctuating Sea-Levels since the Triassic. Science, 235: 1156-1167. https://doi.org/10.1126/science.235.4793.1156
      He, Y., Zhong, G. F., Wang, L. L., et al., 2014. Characteristics and Occurrence of Submarine Canyon-Associated Landslides in the Middle of the Northern Continental Slope, South China Sea. Marine and Petroleum Geology, 57: 546-560. https://doi.org/10.1016/j.marpetgeo.2014.07.003
      Klaucke, I., Masson, D. G., Kenyon, N. H., et al., 2004. Sedimentary Processes of the Lower Monterey Fan Channel and Channel-Mouth Lobe. Marine Geology, 206(1-4): 181-198. https://doi.org/10.1016/j.mar-geo.2004.02.006
      Li, L., Zhang, C., Yan, C., et al., 2021. Characteristics and Genetic Mechanism of a Large-Scale Submarine Gravity-Driven System in Huaguang Depression, Qiongdongnan Basin. Earth Science, 46(10): 3707-3716 (in Chinese with English abstract).
      Lin, C. S., Liu, J. Y., Cai, S. X., et al., 2001. Sedimentary Composition and Development Background of Large Incised Valley and Submarine Gravity Flow System in Yinggehai-Qiongdongnan Basin. Chinese Science Bulletin, 46(1): 69-72 (in Chinese). doi: 10.1007/BF03183213
      Liu, J., Su, M., Qiao, S. H., et al., 2016. Forming Mechanism of the Slope-Confined Submarine Canyons in the Baiyun Sag, Pearl River Mouth Basin. Acta Sedimentologica Sinica, 34(5): 940-950 (in Chinese with English abstract).
      Lu, Y. T., Li, W., Wu, S. G., et al., 2018. Morphology, Architecture, and Evolutionary Processes of the Zhongjian Canyon between Two Carbonate Platforms, South China Sea. Interpretation, 6(4): 1-15. https://doi.org/10.1190/INT-2017-0222.1
      McDonnell, A., Loucks, R. G., Galloway, W. E., 2008. Paleocene to Eocene Deepwater Slope Canyons, Western Gulf of Mexico: Further Insights for the Provenance of Deep-Water Offshore Wilcox Group Plays. AAPG Bulletin, 92(9): 169-1189. https://doi.org/10.1306/05150808014
      Nie, X., Luo, W. D., Zhou, J., 2017. Depositional Characteristics of the Penghu Submarine Canyon in the Northeastern South China Sea. Marine Geology Frontiers, 33(8): 18-23 (in Chinese with English abstract).
      Popescua, I., Lericolais, G., Paninc, N., et al., 2004. The Danube Submarine Canyon (Black Sea): Morphology and Sedimentary Processes. Mar. Geol., 206: 249-265. https://doi.org/10.1016/j.margeo.2004.03.003
      Schwarz, E., Arnott, R. W. C., 2007. Anatomy and Evolution of a Slope Channel-Complex Set (Neoproterozoic Isaac Formation, Windermere Supergroup, Southern Canadian Cordillera): Implications for Reservoir Characterization. Journal of Sedimentary Research, 77(2): 89-109. https://doi.org/10.2110/jsr.2007.015
      Shao, L., Li, X. H., Wang, P. X., et al., 2004. Sedimentary Record of the Tectonic Evolution of the South China Sea since the Oligocene-Evidence from Deep Sea Sediments of ODP Site 1148. Advance in Earth Sciences, 19 (4): 539-544 (in Chinese with English abstract).
      Su, M., Sha, Z. B., Kuang, Z. G., et al., 2015. Erosion and Sedimentation of the Submarine Canyons and the Relationship with Gas Hydrate Accumulation. Geoscience, 29(1): 155-162 (in Chinese with English abstract).
      Su, M., Zhang, C., Xie, X. N., et al., 2014. Controlling Factors on the Submarine Canyon System: A Case Study of the Central Canyon System in the Qiongdongnan Basin, Northern South China Sea. Science in China (Series D: Earth Sciences), 44(8): 1807-1820 (in Chinese).
      Tian, J., Song, J., Ma, B. J., et al., 2021. Segmentation Features of Geomorphology and Sedimentary Structure of Zhongjian Canyon. Earth Science, 46(2): 708-718 (in Chinese with English abstract).
      Viana, A. R., Faugères, J. C., Stow, D. A. V., 1998. Bottom-Current-Controlled Sand Deposits: A Review of Modern Shallow- to Deep-Water Environments. Sedimentary Geology, 115(1-4): 53-80. https://doi.org/10.1016/s0037-0738(97)00087-0
      Webster, J. M., Beaman, R. J., Puga-Bernabéu, Á., et al., 2012. Late Pleistocene History of Turbidite Sedimentation in a Submarine Canyon off the Northern Great Barrier Reef, Australia. Palaeogeography, Palaeoclimatology, Palaeoecology, 331-332: 75-89. https://doi.org/10.1016/j.palaeo.2012.02.034
      Xie, X. N., Chen, Z. H., Sun, Z. P., et al., 2012. Depositional Architecture Characteristics of Deepwater Depositional Systems on the Continental Margins of Northwestern South Sea. Earth Science, 37(4): 627-634 (in Chinese with English abstract).
      Xie, Y. H., 2020. Sedimentary Characteristics and Hydrocarbon Exploration Potential of the Upstream of the Central Canyon in the Yinggehai and Qiongdongnan Basins. Bulletin of Geological Science and Technolog, 39(5): 69-78 (in Chinese with English abstract).
      Xu, S., Wang, Y. M., Peng, X. C., et al., 2013. Depositional Elements and Settings of HD133 and HD77 Cores in the Taiwan Canyon. Acta Sedimentologica Sinica, 31(2): 325-330 (in Chinese with English abstract).
      Yang, S. X., Qiu, Y., Zhu, B. D., et al., 2015. Geological and Geophysical Maps of the South China Sea (1∶2 000 000). China Navigation Book Publishing House, Tianjin (in Chinese).
      Yao, Y. J., Yang, C. P., Li, X. J., et al., 2013. The Seismic Reflection Characteristics and Tectonic Significance of the Tectonic Revolutionary Surface of Mid-Miocene (T3 Seismic Interface) in the Southern South China Sea. Chinese Journal of Geophysics, 56(4): 1274-1286 (in Chinese with English abstract).
      Zhao, Q. H., Wang, P. X., Cheng, X. R., et al., 2001. Record of Miocene Carbon Shift Events in the South China Sea. Science in China (Series D: Earth Sciences), 31(10): 808-815 (in Chinese).
      Zhong, G. J., Gao, H. F., 2005. Sequence Characteristics of Cenozoic Stratigraphy in Zhongjiannan Basin, South China Sea. Geotectonica et Metallogenia, 29(3): 403-409 (in Chinese with English abstract).
      Zhu, M. Z., Graham, S., Pang, X., et al., 2010. Characteristics of Migrating Submarine Canyons from the Middle Miocene to Present: Implications for Paleoceanographic Circulation, Northern South China Sea. Marine and Petroleum Geology, 27(1): 307-319. https://doi.org/10.1016/j.marpetgeo.2009.05.005
      陈泓君, 蔡观强, 罗伟东, 等, 2012. 南海北部陆坡神狐海域峡谷地貌形态特征与成因. 海洋地质与第四纪地质, 32(5): 19-26. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201205006.htm
      陈江欣, 关永贤, 宋海斌, 等, 2015. 麻坑、泥火山在南海北部与西部陆缘的分布特征和地质意义. 地球物理学报, 58(3): 919-938. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201503019.htm
      高红芳, 陈玲, 2006. 南海西部中建南盆地构造格架及形成机制分析. 石油与天然气地质, 27(4): 512-516. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200604011.htm
      高红芳, 聂鑫, 罗伟东, 2021. 海盆沉积"源‒汇"系统分析: 南海北部珠江海谷‒西北次海盆第四纪深水浊积扇. 海洋地质与第四纪地质, 41(2): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ202102001.htm
      李林, 张成, 闫春, 等, 2021. 琼东南盆地华光凹陷大型海底重力滑动系统特征及其成因机制. 地球科学, 46(10): 3707-3716. doi: 10.3799/dqkx.2021.014
      林畅松, 刘景彦, 蔡世祥, 等, 2001. 莺‒琼盆地大型下切谷和海底重力流体系的沉积构成和发育背景. 科学通报, 46(1): 69-72. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200101018.htm
      刘杰, 苏明, 乔少华, 等, 2016. 珠江口盆地白云凹陷陆坡限制型海底峡谷群成因机制探讨. 沉积学报, 34(5): 940-950. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201605013.htm
      聂鑫, 罗伟东, 周娇, 2017. 南海东北部澎湖峡谷群沉积特征. 海洋地质前沿, 33(8): 18-23. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201708003.htm
      邵磊, 李献华, 汪品先, 等, 2004. 南海渐新世以来构造演化的沉积记录: ODP1148站深海沉积物中的证据. 地球科学进展, 19(4): 539-544. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200404008.htm
      苏明, 沙志彬, 匡增桂, 等, 2015. 海底峡谷侵蚀‒沉积作用与天然气水合物成藏. 现代地质, 29(1): 155-162.
      苏明, 张成, 解习农, 等, 2014. 深水峡谷体系控制因素分析: 以南海北部琼东南盆地中央峡谷体系为例. 中国科学(D辑: 地球科学), 44(8): 1807-1820. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201408019.htm
      田洁, 宋军, 马本俊, 等, 2021. 中建海底峡谷地貌及沉积特征的分段性. 地球科学, 46(2): 708-718. doi: 10.3799/dqkx.2020.062
      解习农, 陈志宏, 孙志鹏, 等, 2012. 南海西北陆缘深水沉积体系内部构成特征. 地球科学, 37(4): 627-634. doi: 10.3799/dqkx.2012.072
      谢玉洪, 2020. 莺琼盆地区中央峡谷源头沉积特征及油气勘探前景. 地质科技通报, 39(5): 69-78.
      徐尚, 王英民, 彭学超, 等, 2013. 台湾峡谷HD133和HD77柱状样的沉积构成和发育背景. 沉积学报, 31(2): 325-330. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201302011.htm
      杨胜雄, 邱燕, 朱本铎, 等, 2015. 南海地质地球物理图系(1: 2 000 000). 天津: 中国航海图书出版社.
      姚永坚, 杨楚鹏, 李学杰, 等, 2013. 南海南部海域中中新世(T3界面)构造变革界面地震反射特征及构造含义. 地球物理学报, 56(4): 1274-1286. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201304024.htm
      赵泉鸿, 汪品先, 成鑫荣, 等, 2001. 中新世"碳位移"事件在南海的记录. 中国科学(D辑: 地球科学), 31(10): 808-815. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200110002.htm
      钟广见, 高红芳, 2005. 中建南盆地新生代层序地层特征. 大地构造与成矿学, 29(3): 403-409. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200503017.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(13)  / Tables(1)

      Article views (1026) PDF downloads(92) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return