• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 3
    Mar.  2022
    Turn off MathJax
    Article Contents
    Liu Haiyong, Tang Juxing, Wang Yu, Zeng Qinggao, Zhao Hongfei, Yang Zong, Hua Kang, Zhang Peng, 2022. Petrogenesis and Geological Significance of Quartz Diorite Porphyry in Narong Mining Area, Tibet. Earth Science, 47(3): 1059-1077. doi: 10.3799/dqkx.2022.040
    Citation: Liu Haiyong, Tang Juxing, Wang Yu, Zeng Qinggao, Zhao Hongfei, Yang Zong, Hua Kang, Zhang Peng, 2022. Petrogenesis and Geological Significance of Quartz Diorite Porphyry in Narong Mining Area, Tibet. Earth Science, 47(3): 1059-1077. doi: 10.3799/dqkx.2022.040

    Petrogenesis and Geological Significance of Quartz Diorite Porphyry in Narong Mining Area, Tibet

    doi: 10.3799/dqkx.2022.040
    • Received Date: 2021-11-23
    • Publish Date: 2022-03-25
    • Narong mining area is located in the southern margin of southern Qiangtang Block, providing an ideal window for understanding the tectonic-magmatic activities and mineralization of Bangong Co-Nujiang metallogenic belt. In this case study, we focus on the quartz diorite porphyries in the Narong mining area and report new zircon U-Pb ages, geochemical, zircon Hf and whole-rock Sr-Nd isotopic data. The results show that the Narong quartz diorite porphyries were emplaced during the Late Jurassic (158-155 Ma). Geochemically, the quartz diorite porphyry samples belong to calc-alkaline series. They are characterized by high Sr (178×10-6-1 086×10-6) contents, and high Sr/Y (15-82), (La/Yb)N (17-34) ratios with depletions of heavy rare earth elements (such as Yb=1.05×10-6-1.45×10-6, Y=10.50×10-6-14.78×10-6). These geochemical features are generally consistent with those of typical adakitic rocks. Additionally, the studied samples have lower MgO, Cr, Ni but higher Th and Th/U. Their zircon εHf(t) values are between -1.7 to +4.3, initial (87Sr/86Sr)i values are between 0.705 93-0.706 81 and the εNd(t) are between -2.67 to -0.49. These features, along with regional geological information, indicate that they are products of partial melting of thickened lower crust during slab subduction process. In combination with data from the middle and western segments of South Qiangtang, we infer that the Bangong Co-Nujiang Ocean subducted northward beneath the Qiangtang Block, forming a nearly E-W direction magma arc (> 1 200 km) during the Late Jurassic. The ore-forming intrusions in the Narong mining area and the Duolong ore concentration area have similar zircon Hf isotopic compositions, and zircon trace elements have high Ce/Ce* and Eu/Eu* ratios, and whole rock trace elements have high Sr/Y and V/Sc ratios, showing positive mineralization potential.

       

    • loading
    • Bao, P. S., Xiao, X. C., Su, L., et al., 2007. Petrological, Geochemical and Chronological Constraints for the Tectonic Setting of the Dongco Ophiolite in Tibet. Science China Earth Sciences, 50(5): 660-671. https://doi.org/10.1007/s11430-007-0045-5
      Castillo, P. R., Janney, P. E., Solidum, R. U., 1999. Petrology and Geochemistry of Camiguin Island, Southern Philippines: Insights to the Source of Adakites and Other Lavas in a Complex Arc Setting. Contributions to Mineralogy and Petrology, 134(1): 33-51. https://doi.org/10.1007/s004100050467
      Chen, H. A., Zhu, X. P., Ma, D. F., et al., 2013. Geochronology and Geochemistry of the Bolong Porphyry Cu-Au Deposit, Tibet and Its Mineralizing Significance. Acta Geologica Sinica, 87(10): 1593-1611 (in Chinese with English abstract).
      Chen, S. H., Wang, B., Zhang, J. R., et al., 2014. Lithogeochemical Characteristics and Chronology of Fuye Granitic Pluton from the Western Bangong-Nujiang Metallogenic Belt in China. Journal of East China Institute of Technology (Natural Science Edition), 37(1): 37-44 (in Chinese with English abstract).
      Chen, Y. L., Zhang, K. Z., Yang, Z. M., et al., 2006. Discovery of a Complete Ophiolite Section in the Jueweng Area, Nagqu County, in the Central Segment of the Bangong Co-Nujiang Junction Zone, Qinghai-Tibet Plateau. Geological Bulletin of China, 25(6): 694-699(in Chinese with English abstract).
      Defant, M. J., Drummond, M. S., 1990. Derivation of some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347 (6294): 662-665. https://doi.org/10.1038/347662a0
      Fan, J. J., Li, C., Wu, H., et al., 2016. Late Jurassic Adakitic Granodiorite in the Dong Co Area, Northern Tibet: Implications for Subduction of the Bangong-Nujiang Oceanic Lithosphere and Related Accretion of the Southern Qiangtang Terrane. Tectonophysics, 691: 345-361. https://doi.org/10.1016/j.tecto.2016.10.026
      Guo, F., Nakamuru, E., Fan, W. M., et al., 2007. Generation of Palaeocene Adakitic Andesites by Magma Mixing; Yanji Area, NE China. Journal of Petrology, 48(4): 661-692. https://doi.org/10.1093/petrology/egl077
      Hou, Z. Q., Wang, T., 2018. Isotopic Mapping and Deep Material Probing (Ⅱ): Imaging Crustal Architecture and Its Control on Mineral Systems. Earth Science Frontiers, 25(6): 20-41 (in Chinese with English abstract).
      Hou, Z. Q., Zheng, Y. C., Yang, Z. M., et al., 2013. Contribution of Mantle Components within Juvenile Lower-Crust to Collisional Zone Porphyry Cu Systems in Tibet. Mineralium Deposita, 48(2): 173-192. https://doi.org/10.1007/s00126-012-0415-6
      Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012a. A "Wire" Signal Smoothing Device for Laser Ablation Inductively Coupled Plasma Mass Spectrometry Analysis. Spectrochimica Acta Part B: Atomic Spectroscopy, 78: 50-57. https://doi.org/10.1016/j.sab.2012.09.007
      Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012b. Improved in Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9): 1391-1399. https://doi.org/10.1039/c2ja30078h
      Jiang, X. W., Gong, D. X., Zou, H., et al., 2020. Geochemical Characteristics and U-Pb Geochronological Significance of the Dusong Monzogranite in the Songpan-Ganzi Orogen. Mineralogy and Petrology, 40(3): 26-41 (in Chinese with English abstract).
      Li, J. X., Qin, K. Z., Li, G. M., et al., 2014a. Geochronology, Geochemistry, and Zircon Hf Isotopic Compositions of Mesozoic Intermediate-Felsic Intrusions in Central Tibet: Petrogenetic and Tectonic Implications. Lithos, 198-199: 77-91. https://doi.org/10.1016/j.lithos.2014.03.025
      Li, J. X., Qin, K. Z., Li, G. M., et al., 2016a. Petrogenesis of Cretaceous Igneous Rocks from the Duolong Porphyry Cu-Au Deposit, Central Tibet: Evidence from Zircon U-Pb Geochronology, Petrochemistry and Sr-Nd-Pb-Hf Isotope Characteristics. Geological Journal, 51(2): 285-307. https://doi.org/10.1002/gj.2631
      Li, S. M., Zhu, D. C., Wang, Q., et al., 2014b. Northward Subduction of Bangong-Nujiang Tethys: Insight from Late Jurassic Intrusive Rocks from Bangong Tso in Western Tibet. Lithos, 205: 284-297. https://doi.org/10.1016/j.lithos.2014.07.010
      Li, Y. L., He, J., Han, Z. P., et al., 2016b. Late Jurassic Sodium-Rich Adakitic Intrusive Rocks in the Southern Qiangtang Terrane, Central Tibet, and Their Implications for the Bangong-Nujiang Ocean Subduction. Lithos, 245: 34-46. https://doi.org/10.1016/j.lithos.2015.10.014
      Li, H. W., Zhao, P., 2019. Tectonic Evolution and Research Significance of Iron and Copper Deposits in Narong Mining Area, Anduo County, Tibet Autonomous Region. Sichuan Nonferrous Metals, (3): 27-29 (in Chinese with English abstract).
      Li, X. K., Li, C., Sun, Z. M., et al., 2015. Zircon U-Pb Geochronology, Hf Isotope, and Whole-Rock Geochemistry of Diorite in the Saijiao Cu-Au Deposit, Tibet, and Its Ore-Forming Significance. Geological Bulletin of China, 34(5): 908-918 (in Chinese with English abstract).
      Lin, B., Fang, X., Wang, Y. Y., et al., 2019. Petrologic Genesis of Ore-Bearing Porphyries in Tiegelongnan Giant Cu (Au, Ag) Deposit, Tibet and Its Implications for the Dynamic of Cretaceous Mineralization, Duolong. Acta Petrologica Sinica, 35(3): 642-664 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.03.03
      Liu, T., Zhai, Q. G., Wang, J., et al., 2016. Tectonic Significance of the Dongqiao Ophiolite in the North-Central Tibetan Plateau: Evidence from Zircon Dating, Petrological, Geochemical and Sr-Nd-Hf Isotopic Characterization. Journal of Asian Earth Sciences, 116: 139-154. https://doi.org/10.1016/j.jseaes.2015.11.014
      Liu, H.Y., Yue, Y.Z., Dunzhu, W., et al., 2019. Petrogenesis and Geological Significance of Late Jurassic Volcanic Rocks in Mami Area, Central Tibetan Plateau. Earth Science, 44(7): 2368-2382 (in Chinese with English abstract).
      Liu, M., 2012. Petrogenesis and Tectonic Significance of Early Jurassic Alkalic Pluton in Nyainrong Microcontinent, Central Tibet (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Liu, R. H., He, B. Z., Zheng, M. L., et al., 2019. Tectonic-Sedimentary Evolution during Late Triassic-Jurassic Period in the Eastern Part of the Qiangtang Basin, Tibet. Acta Petrologica Sinica, 35(6): 1857-1874 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.06.14
      Loader, M. A., Wilkinson, J. J., Armstrong, R. N., 2017. The Effect of Titanite Crystallisation on Eu and Ce Anomalies in Zircon and Its Implications for the Assessment of Porphyry Cu Deposit Fertility. Earth and Planetary Science Letters, 472: 107-119. https://doi.org/10.1016/j.epsl.2017.05.010
      Lu, Y. J., Loucks, R. R., Fiorentini, M., et al., 2016. Zircon Compositions as a Pathfinder for Porphyry Cu±Mo±Au Deposits. In: Richards, J., ed., Society of Economic Geologists Special Publication No. 19 on Tethyan Tectonics and Metallogeny. Society of Economic Geologists, Littleton, 329-347.
      Macpherson, C. G., Dreher, S. T., Thirlwall, M. F., 2006. Adakites without Slab Melting: High Pressure Differentiation of Island Arc Magma, Mindanao, the Philippines. Earth and Planetary Science Letters, 243(3-4): 581-593. https://doi.org/10.1016/j.epsl.2005.12.034
      Miyashiro, A., 1974. Volcanic Rock Series in Island Arcs and Active Continental Margins. American Journal of Science, 274(4): 321-355. https://doi.org/10.2475/ajs.274.4.321
      Mo, X. X., 2020. Growth and Evolution of Crust of Tibetan Plateau from Perspective of Magmatic Rocks. Earth Science, 45(7): 2245-2257 (in Chinese with English abstract).
      Ran, H., Wang, G. H., Liang, X., et al., 2015. The Late Jurassic Diorite in Rongma Area, Southern Qiangtang Terrane, Tibetan Plateau: Product of Northward Subduction of the Bangong Co-Nujiang River Tethys Ocean. Geological Bulletin of China, 34(5): 815-825 (in Chinese with English abstract).
      Song, Y., Tang, J. X., Qu, X. M., et al., 2014. Progress in the Study of Mineralization in the Bangongco-Nujiang Metallogenic Belt and Some New Recognition. Advances in Earth Science, 29(7): 795-809 (in Chinese with English abstract).
      Streck, M. J., Leeman, W. P., Chesley, J., 2007. High-Magnesian Andesite from Mount Shasta: A Product of Magma Mixing and Contamination, not a Primitive Mantle Melt. Geology, 35(4): 351-354. https://doi.org/10.1130/g23286a.1
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Sun, J., 2015. Magmatism and Metallogenesis at Duolong Ore District, Tibet (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Sun, Z. M., 2015. Copper-Gold Mineralization and Metallogenic Regularity of Duolong Mineralization Area in Western Bangongco-Nujiang Metallogenic Belt, Tibet (Dissertation). Jilin University, Changchun (in Chinese with English abstract).
      Wang, Q., Wyman, D. A., Xu, J. F., et al., 2007. Early Cretaceous Adakitic Granites in the Northern Dabie Complex, Central China: Implications for Partial Melting and Delamination of Thickened Lower Crust. Geochimica et Cosmochimica Acta, 71(10): 2609-2636. https://doi.org/10.1016/j.gca.2007.03.008
      Wang, Q., Wyman, D. A., Xu, J. F., et al., 2008. Eocene Melting of Subducting Continental Crust and Early Uplifting of Central Tibet: Evidence from Central-Western Qiangtang High-K Calc-Alkaline Andesites, Dacites and Rhyolites. Earth and Planetary Science Letters, 272(1-2): 158-171. https://doi.org/10.1016/j.epsl.2008.04.034
      Wei, S. G., 2017. Study on the Early Cretaceous Magmatism and Tectonic Dynamic Setting of the Duolong Cu Mining District in the Bangong-Nujiang Metallogenic Belt, Tibet (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325-343. https://doi.org/10.1016/0009-2541(77)90057-2
      Wu, H., Xie, C. M., Li, C., et al., 2016. Tectonic Shortening and Crustal Thickening in Subduction Zones: Evidence from Middle-Late Jurassic Magmatism in Southern Qiangtang, China. Gondwana Research, 39: 1-13. https://doi.org/10.1016/j.gr.2016.06.009
      Wu, F. Y., Li, X. H., Zheng, Y. F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2): 185-220 (in Chinese with English abstract).
      Xie, C. M., 2013. Tectonic Evolution of the Nyainrong Microcontinent, Tibet: Constraints from Geochronology and Geochemistry (Dissertation). Jilin University, Changchun (in Chinese with English abstract).
      Xu, J. F., Shinjo, R., Defant, M. J., et al., 2002. Origin of Mesozoic Adakitic Intrusive Rocks in the Ningzhen Area of East China: Partial Melting of Delaminated Lower Continental Crust? Geology, 30(12): 1111-1114. https://doi.org/10.1130/0091-7613(2002)0301111:oomair>2.0.co;2 doi: 10.1130/0091-7613(2002)0301111:oomair>2.0.co;2
      Xu, J. F., Wu, J. B., Wang, Q., et al., 2014. Research Advances of Adakites and Adakitic Rocks in China. Bulletin of Mineralogy, Petrology and Geochemistry, 33(1): 6-13 (in Chinese with English abstract).
      Xu, R. K., Zheng, Y. Y., Zhao, P. J., et al., 2007. Definition and Geological Significance of the Gacangjian Volcanic Arc North of Dongqiao, Tibet. Geology in China, 34(5): 768-777 (in Chinese with English abstract).
      Xu, Z. Q., Yang, J. S., Li, H. B., et al., 2006. The Qinghai-Tibet Plateau and Continental Dynamics: A Review on Terrain Tectonics, Collisional Orogenesis, and Processes and Mechanisms for the Rise of the Plateau. Geology in China, 33(2): 221-238 (in Chinese with English abstract).
      Yang, X., Tang, J. X., Yang, Z. Y., et al., 2021. Late Cretaceous Adakite in Sinongduo Area, Tibet: Implications for Petrogenesis and Mineralization. Earth Science, 46(5): 1597-1612 (in Chinese with English abstract).
      Yun, X. R., Cai, Z. H., He, B. Z., et al., 2019. Early Paleozoic and Mesozoic Orogenic Records in Amdo Region, Tibet: Zircon U-Pb Geochronology and Hf Isotopic Compositions from the Amdo Micro-Continent and South Qiangtang Terrane. Acta Petrologica Sinica, 35(6): 1673-1692 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.06.04
      Zeng, L. S., Gao, L. E., Xie, K. J., et al., 2011. Mid-Eocene High Sr/Y Granites in the Northern Himalayan Gneiss Domes: Melting Thickened Lower Continental Crust. Earth and Planetary Science Letters, 303(3-4): 251-266. https://doi.org/10.1016/j.epsl.2011.01.005
      Zeng, Y. C., Xu, J. F., Chen, J. L., et al., 2021. Early Cretaceous (~138-134 Ma) Forearc Ophiolite and Tectonomagmatic Patterns in Central Tibet: Subduction Termination and re-Initiation of Meso-Tethys Ocean Caused by Collision of an Oceanic Plateau at the Continental Margin? Tectonics, 40(3): e2020TC006423. https://doi.org/10.1029/2020tc006423
      Zhang, K. J., Xia, B., Zhang, Y. X., et al., 2014. Central Tibetan Meso-Tethyan Oceanic Plateau. Lithos, 210-211: 278-288. https://doi.org/10.1016/j.lithos.2014.09.004
      Zhang, Z., Geng, Q. R., Peng, Z. M., et al., 2011. Geochemistry and Geochronology of the Caima Granites in the Western Part of the Bangong Lake-Nujiang Metallogenic Zone, Xizang. Sedimentary Geology and Tethyan Geology, 31(4): 86-96 (in Chinese with English abstract).
      Zhu, D. C., Li, S. M., Cawood, P. A., et al., 2016. Assembly of the Lhasa and Qiangtang Terranes in Central Tibet by Divergent Double Subduction. Lithos, 245: 7-17. https://doi.org/10.1016/j.lithos.2015.06.023
      Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2011. The Lhasa Terrane: Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 301(1-2): 241-255. https://doi.org/10.1016/j.epsl.2010.11.005
      Zhu, X. P., Chen, H. A., Liu, H. F., et al., 2015a. Geochronology and Geochemistry of Porphyries from the Naruo Porphyry Copper Deposit, Tibet and Their Metallogenic Significance. Acta Geologica Sinica, 89(1): 109-128 (in Chinese with English abstract).
      Zhu, X. P., Chen, H. A., Liu, H. F., et al., 2015b. Zircon U-Pb Ages, Geochemistry of the Porphyries from the Duobuza Porphyry Cu-Au Deposit, Tibet and Their Metallogenic Significance. Acta Geologica Sinica, 89(3): 534-548 (in Chinese with English abstract).
      Zong, K. Q., Klemd, R., Yuan, Y., et al., 2017. The Assembly of Rodinia: The Correlation of Early Neoproterozoic (Ca. 900 Ma) High-Grade Metamorphism and Continental Arc Formation in the Southern Beishan Orogen, Southern Central Asian Orogenic Belt (CAOB). Precambrian Research, 290: 32-48. https://doi.org/10.1016/j.precamres.2016.12.010
      陈华安, 祝向平, 马东方, 等, 2013. 西藏波龙斑岩铜金矿床成矿斑岩年代学、岩石化学特征及其成矿意义. 地质学报, 87(10): 1593-1611. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201310009.htm
      陈士海, 王斌, 张健仁, 等, 2014. 班公湖‒怒江成矿带西段弗野花岗岩体的岩石地球化学特征及年代学研究. 东华理工大学学报(自然科学版), 37(1): 37-44. doi: 10.3969/j.issn.1674-3504.2014.01.006
      陈玉禄, 张宽忠, 杨志民, 等, 2006. 青藏高原班公湖‒怒江结合带中段那曲县觉翁地区发现完整的蛇绿岩剖面. 地质通报, 25(6): 694-699. doi: 10.3969/j.issn.1671-2552.2006.06.007
      侯增谦, 王涛, 2018. 同位素填图与深部物质探测(Ⅱ): 揭示地壳三维架构与区域成矿规律. 地学前缘, 25(6): 20-41. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201806004.htm
      蒋修未, 龚大兴, 邹灏, 等, 2020. 松潘‒甘孜造山带独松花岗岩体地球化学特征、U-Pb年代学及地质意义. 矿物岩石, 40(3): 26-41. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS202003004.htm
      李宏伟, 赵鹏, 2019. 西藏自治区安多县纳茸矿区铁铜矿构造演化及研究意义. 四川有色金属, (3): 27-29. doi: 10.3969/j.issn.1006-4079.2019.03.008
      李兴奎, 李才, 孙振明, 等, 2015. 西藏赛角铜金矿闪长岩LA-ICP-MS锆石U-Pb年龄、Hf同位素和地球化学特征及成矿意义. 地质通报, 34(5): 908-918. doi: 10.3969/j.issn.1671-2552.2015.05.011
      林彬, 方向, 王艺云, 等, 2019. 西藏铁格隆南超大型铜(金、银)矿含矿斑岩岩石成因及其对多龙地区早白垩世成矿动力学机制的启示. 岩石学报, 35(3): 642-664. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201903003.htm
      刘海永, 岳鋆璋, 顿珠旺堆, 等, 2019. 青藏高原中部麻米地区晚侏罗世火山岩岩石成因及其地质意义. 地球科学, 44(7): 2368-2382. doi: 10.3799/dqkx.2018.382
      刘敏, 2012. 青藏高原中部聂荣微陆块侏罗纪早期富碱侵入岩的岩石成因及构造意义(博士学位论文). 北京: 中国地质大学.
      刘若涵, 何碧竹, 郑孟林, 等, 2019. 羌塘盆地东部晚三叠世‒侏罗纪构造‒沉积演化. 岩石学报, 35(6): 1857-1874. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201906014.htm
      莫宣学, 2020. 从岩浆岩看青藏高原地壳的生长演化. 地球科学, 45(7): 2245-2257. doi: 10.3799/dqkx.2020.160
      冉皞, 王根厚, 梁晓, 等, 2015. 青藏高原南羌塘荣玛晚侏罗世闪长岩: 班公湖‒怒江特提斯洋向北俯冲产物. 地质通报, 34(5): 815-825. doi: 10.3969/j.issn.1671-2552.2015.05.002
      宋扬, 唐菊兴, 曲晓明, 等, 2014. 西藏班公湖‒怒江成矿带研究进展及一些新认识. 地球科学进展, 29(7): 795-809.
      孙嘉, 2015. 西藏多龙矿集区岩浆成因与成矿作用研究(博士学位论文). 北京: 中国地质大学.
      孙振明, 2015. 西藏班‒怒成矿带西段多龙矿集区铜金成矿作用与成矿规律(博士学位论文). 长春: 吉林大学.
      韦少港, 2017. 西藏班‒怒成矿带多龙矿集区早白垩世岩浆作用及动力学背景(博士学位论文). 北京: 中国地质大学.
      吴福元, 李献华, 郑永飞, 等, 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm
      解超明, 2013. 青藏高原聂荣微陆块构造演化——年代学与地球化学制约(博士学位论文). 长春: 吉林大学.
      许继峰, 邬建斌, 王强, 等, 2014. 埃达克岩与埃达克质岩在中国的研究进展. 矿物岩石地球化学通报, 33(1): 6-13. doi: 10.3969/j.issn.1007-2802.2014.01.015
      许荣科, 郑有业, 赵平甲, 等, 2007. 西藏东巧北尕苍见岛弧的厘定及地质意义. 中国地质, 34(5): 768-777. doi: 10.3969/j.issn.1000-3657.2007.05.003
      许志琴, 杨经绥, 李海兵, 等, 2006. 青藏高原与大陆动力学: 地体拼合、碰撞造山及高原隆升的深部驱动力. 中国地质, 33(2): 221-238. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200602001.htm
      杨昕, 唐菊兴, 杨宗耀, 等, 2021. 西藏斯弄多地区晚白垩世埃达克岩: 岩石成因及成矿潜力指示. 地球科学, 46(5): 1597-1612. doi: 10.3799/dqkx.2020.157
      贠晓瑞, 蔡志慧, 何碧竹, 等, 2019. 西藏安多地区早古生代及中生代造山记录: 来自安多微陆块‒南羌塘锆石U-Pb年代学及Hf同位素研究. 岩石学报, 35(6): 1673-1692. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201906004.htm
      张璋, 耿全如, 彭智敏, 等, 2011. 班公湖‒怒江成矿带西段材玛花岗岩体岩石地球化学及年代学. 沉积与特提斯地质, 31(4): 86-96. doi: 10.3969/j.issn.1009-3850.2011.04.013
      祝向平, 陈华安, 刘鸿飞, 等, 2015a. 西藏拿若斑岩铜金矿床成矿斑岩年代学、岩石化学特征及其成矿意义. 地质学报, 89(1): 109-128. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201501009.htm
      祝向平, 陈华安, 刘鸿飞, 等, 2015b. 西藏多不杂斑岩铜矿斑岩锆石U-Pb年龄、岩石地球化学特征及其成矿意义. 地质学报, 89(3): 534-548. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201503008.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)  / Tables(3)

      Article views (1983) PDF downloads(73) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return