• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 6
    Jun.  2022
    Turn off MathJax
    Article Contents
    Hu Yufeng, Wang Ji, Li Zhenhong, Peng Jianbing, 2022. Land Surface Soil Moisture along Sichuan-Tibet Traffic Corridor Retrieved by Spaceborne Global Navigation Satellite System Reflectometry. Earth Science, 47(6): 2058-2068. doi: 10.3799/dqkx.2022.050
    Citation: Hu Yufeng, Wang Ji, Li Zhenhong, Peng Jianbing, 2022. Land Surface Soil Moisture along Sichuan-Tibet Traffic Corridor Retrieved by Spaceborne Global Navigation Satellite System Reflectometry. Earth Science, 47(6): 2058-2068. doi: 10.3799/dqkx.2022.050

    Land Surface Soil Moisture along Sichuan-Tibet Traffic Corridor Retrieved by Spaceborne Global Navigation Satellite System Reflectometry

    doi: 10.3799/dqkx.2022.050
    • Received Date: 2021-12-11
    • Publish Date: 2022-06-25
    • Land surface soil moisture affects the land-air energy exchange and the water cycle, which is an important factor for geohazards such as debris flow and freeze-thaw of permafrost. Obtaining soil moisture along the Sichuan-Tibet traffic corridor corridor contributes to study climate change and the risk of cryospheric hazards along the railway. In this study, CYGNSS(cyclone global navigation satellite system) GNSS-R(global navigation satellite system reflectometry) signals, combined with land cover, normalized differential vegetation index (NDVI), land surface roughness, and other surface soil moisture influencing factors, are taken as input parameters to the artificial neural network method to establish a multi-parameter inversion model of surface soil moisture. Then it generates a daily product of surface soil moisture with a spatial resolution of 36 km in the area along the Sichuan-Tibet railway for two consecutive years from 2018 to 2019. With soil moisture active and passive (SMAP) soil moisture as references, the correlation coefficient R of the soil moisture is 0.8, the root mean square error (RMSE) is 0.032 cm3/cm3, and the Bias is 0.014 cm3/cm3. The soil moisture products could provide continuous and reliable data for the study of climate change and land surface hazards along the Sichuan-Tibet traffic corridor.

       

    • loading
    • Al-Khaldi, M. M., Johnson, J. T., 2022. Soil Moisture Retrievals Using CYGNSS Data in a Time-Series Ratio Method: Progress Update and Error Analysis. IEEE Geoscience and Remote Sensing Letters, 19: 1-5. https://doi.org/10.1109/lgrs.2021.3086092
      Camps, A., Park, H., Pablos, M., et al., 2016. Sensitivity of GNSS-R Spaceborne Observations to Soil Moisture and Vegetation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(10): 4730-4742. https://doi.org/10.1109/jstars.2016.2588467
      Carreno-Luengo, H., Luzi, G., Crosetto, M., 2019. Sensitivity of CyGNSS Bistatic Reflectivity and SMAP Microwave Radiometry Brightness Temperature to Geophysical Parameters over Land Surfaces. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(1): 107-122. https://doi.org/10.1109/jstars.2018.2856588
      Chai, B., Tao, Y. Y., Du, J., et al., 2020. Hazard Assessment of Debris Flow Triggered by Outburst of Jialong Glacial Lake in Nyalam County, Tibet. Earth Science, 45(12): 4630-4639(in Chinese with English abstract).
      Chan, S. K., Bindlish, R., O'Neill, P. E., et al., 2016. Assessment of the SMAP Passive Soil Moisture Product. IEEE Transactions on Geoscience and Remote Sensing, 54(8): 4994-5007. https://doi.org/10.1109/TGRS.2016.2561938.
      Chen, H. Y., Wu, J., Li, C. B., et al., 2020. Application Evaluation of Satellite Soil Moisture Products in Qinghai-Tibet Plateau. Acta Ecologic Sinica, 40(24): 9195-9207(in Chinese with English abstract).
      Chen, R., Yang, X. M., Wan, G. N., et al., 2020. Soil Freezing-Thawing Processes on the Tibetan Plateau: A Review Based on Hydrothermal Dynamics. Progress in Geography, 39(11): 1944-1958(in Chinese with English abstract). doi: 10.18306/dlkxjz.2020.11.014
      Chen, Y., Yang, K., Qin, J., et al., 2013. Evaluation of AMSR-E Retrievals and GLDAS Simulations against Observations of a Soil Moisture Network on the Central Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 118(10): 4466-4475. https://doi.org/10.1002/jgrd.50301
      Chen, Y., Yang, K., Qin, J., et al., 2017. Evaluation of SMAP, SMOS, and AMSR2 Soil Moisture Retrievals against Observations from Two Networks on the Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 122: 5780-5792. doi: 10.1002/2016jd026388
      Chew, C. C., Shah, R., Zuffada, C., et al., 2016. Demonstrating Soil Moisture Remote Sensing with Observations from the UK TechDemoSat-1 Satellite Mission. Geophysical Research Letters, 43(7): 3317-3324. https://doi.org/10.1002/2016gl068189
      Chew, C. C., Small, E. E., 2018. Soil Moisture Sensing Using Spaceborne GNSS Reflections: Comparison of CYGNSS Reflectivity to SMAP Soil Moisture. Geophysical Research Letters, 45(9): 4049-4057. https://doi.org/10.1029/2018gl077905
      Chew, C., Small, E., 2020a. Description of the UCAR/CU Soil Moisture Product. Remote Sensing, 12(10): 1558. https://doi.org/10.3390/rs12101558
      Chew, C., Small, E., 2020b. Estimating Inundation Extent Using CYGNSS Data: A Conceptual Modeling Study. Remote Sensing of Environment, 246: 111869. https://doi.org/10.1016/j.rse.2020.111869
      Clarizia, M. P., Pierdicca, N., Costantini, F., et al., 2019. Analysis of CYGNSS Data for Soil Moisture Retrieval. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(7): 2227-2235. https://doi.org/10.1109/jstars.2019.2895510.
      Dente, L., Su, Z. B., Wen, J., 2012. Validation of SMOS Soil Moisture Products over the Maqu and Twente Regions. Sensors (Basel, Switzerland), 12(8): 9965-9986. https://doi.org/10.3390/s120809965
      Fan, K. K., Zhang, Q., Sun, P., et al., 2019. Variation, Causes and Future Estimation of Surface Soil Moisture on the Tibetan Plateau. Acta Geographica Sinica, 74(3): 520-533(in Chinese with English abstract).
      Foti, G., Gommenginger, C., Jales, P., et al., 2015. Spaceborne GNSS Reflectometry for Ocean Winds: First Results from the UK TechDemoSat-1 Mission. Geophysical Research Letters, 42(13): 5435-5441. https://doi.org/10.1002/2015gl064204.
      Jackson, T. J., Cosh, M. H., Bindlish, R., et al., 2010. Validation of Advanced Microwave Scanning Radiometer Soil Moisture Products. IEEE Transactions on Geoscience and Remote Sensing, 48(12): 4256-4272. https://doi.org/10.1109/tgrs.2010.2051035
      Jing, C. L., 2020. Comparative Evaluation of SMAP & CCI & CLDAS Soil Moisture Products in Typical Region of Qinghai-Tibet Plateau. Journal of Subtropical Resources and Environment, 15(1): 85-94(in Chinese with English abstract).
      Kerr, Y. H., Waldteufel, P., Wigneron, J. P., et al., 2001. Soil Moisture Retrieval from Space: The Soil Moisture and Ocean Salinity (SMOS) Mission. IEEE Transactions on Geoscience and Remote Sensing, 39(8): 1729-1735. https://doi.org/10.1109/36.942551
      Li, J. R., Niu, Z. G., Feng, L., et al., 2020. Simulation and Prediction of Extreme Temperature Indices in Yangtze and Yellow River Basins by CMIP5 Models. Earth Science, 45(6): 1887-1904(in Chinese with English abstract).
      Liu, J., Chai, L. N., Lu, Z., et al., 2019. Evaluation of SMAP, SMOS-IC, FY3B, JAXA, and LPRM Soil Moisture Products over the Qinghai-Tibet Plateau and Its Surrounding Areas. Remote Sensing, 11(7): 792. https://doi.org/10.3390/rs11070792
      Liu, Q., Du, J. Y., Shi, J. C., et al., 2013. Analysis of Spatial Distribution and Multi-Year Trend of the Remotely Sensed Soil Moisture on the Tibetan Plateau. Science China: Earth Sciences, 43(10): 1677-1690(in Chinese).
      Mladenova, I. E., Jackson, T. J., Bindlish, R., et al., 2013. Incidence Angle Normalization of Radar Backscatter Data. IEEE Transactions on Geoscience and Remote Sensing, 51(3): 1791-1804. https://doi.org/10.1109/tgrs.2012.2205264.
      Peng, J. B., Cui, P., Zhuang, J. Q., 2020. Challenges to Engineering Geology of Sichuan-Tibet Railway. Chinese Journal of Rock Mechanics and Engineering, 39(12): 2377-2389(in Chinese with English abstract).
      Ruf, C. S., Atlas, R., Chang, P. S., et al., 2016. New Ocean Winds Satellite Mission to Probe Hurricanes and Tropical Convection. Bulletin of the American Meteorological Society, 97(3): 385-395. https://doi.org/10.1175/bams-d-14-00218.1
      Su, Z., Wen, J., Dente, L., et al., 2011. The Tibetan Plateau Observatory of Plateau Scale Soil Moisture and Soil Temperature (Tibet-Obs) for Quantifying Uncertainties in Coarse Resolution Satellite and Model Products. Hydrology and Earth System Sciences, 15(7): 2303-2316. https://doi.org/10.5194/hess-15-2303-2011
      Yang, C. Y., Wang, S. X., Yang, C. Y., et al., 2021. Spatial-Temporal Variation Characteristics of Vegetation Coverage along Sichuan-Tibet Railway. Journal of Arid Land Resources and Environment, 35(3): 174-182(in Chinese with English abstract).
      Yang, K., Qin, J., Zhao, L., et al., 2013. A Multiscale Soil Moisture and Freeze-Thaw Monitoring Network on the Third Pole. Bulletin of the American Meteorological Society, 94(12): 1907-1916. doi: 10.1175/bams-d-12-00203.1
      Yao, P., Lu, H., Shi, J., et al., 2021. A Long Term Global Daily Soil Moisture Dataset Derived from AMSR-E and AMSR2 (2002—2019). Scientific Data, 8(1). https://doi.org/10.1038/s41597-021-00925-8
      Zeng, J. Y., Li, Z., Chen, Q., et al., 2015. Evaluation of Remotely Sensed and Reanalysis Soil Moisture Products over the Tibetan Plateau Using In-Situ Observations. Remote Sensing of Environment, 163: 91-110. https://doi.org/10.1016/j.rse.2015.03.008.
      Zhang, P., Zheng, D., Wen, J., et al., 2021. A 10-Year Surface Soil Moisture Dataset Produced Based on In Situ Measurements Collected from the Tibet-Obs (2009—2019). National Tibetan Plateau Data Center, doi: 10.4121/12763700.v7
      Zheng, D. H., Wang, X., van der Velde, R., et al., 2018. Impact of Surface Roughness, Vegetation Opacity and Soil Permittivity on L-Band Microwave Emission and Soil Moisture Retrieval in the Third Pole Environment. Remote Sensing of Environment, 209: 633-647. https://doi.org/10.1016/j.rse.2018.03.011.
      柴波, 陶阳阳, 杜娟, 等, 2020. 西藏聂拉木县嘉龙湖冰湖溃决型泥石流危险性评价. 地球科学, 45(12): 4630-4639. doi: 10.3799/dqkx.2020.294
      陈泓羽, 吴静, 李纯斌, 等, 2020. 卫星土壤水分产品在青藏高原地区的适用性评价. 生态学报, 40(24): 9195-9207. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB202024033.htm
      陈瑞, 杨梅学, 万国宁, 等, 2020. 基于水热变化的青藏高原土壤冻融过程研究进展. 地理科学进展, 39(11): 1944-1958. doi: 10.18306/dlkxjz.2020.11.014
      范科科, 张强, 孙鹏, 等, 2019. 青藏高原地表土壤水变化、影响因子及未来预估. 地理学报, 74(3): 520-533. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201903010.htm
      荆琛琳, 2020. SMAP、CCI和CLDAS土壤湿度产品在青藏高原典型区域的比较验证. 亚热带资源与环境学报, 15(1): 85-94. doi: 10.3969/j.issn.1673-7105.2020.01.012
      李佳瑞, 牛自耕, 冯岚, 等, 2020. CMIP5模式对长江和黄河流域极端气温指标的模拟与预估. 地球科学, 45(6): 1887-1904. doi: 10.3799/dqkx.2020.116
      刘强, 杜今阳, 施建成, 等, 2013. 青藏高原表层土壤湿度遥感反演及其空间分布和多年变化趋势分析. 中国科学: 地球科学, 43(10): 1677-1690. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201310012.htm
      彭建兵, 崔鹏, 庄建琦, 2020. 川藏交通廊道对工程地质提出的挑战. 岩石力学与工程学报, 39(12): 2377-2389.
      杨彩云, 王世曦, 杨春艳, 等, 2021. 川藏交通廊道沿线植被覆盖度时空变化特征分析. 干旱区资源与环境, 35(3): 174-182.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)  / Tables(3)

      Article views (1479) PDF downloads(89) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return