• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 3
    Mar.  2023
    Turn off MathJax
    Article Contents
    Duan Hexiao, Liu Yanguang, Wang Guiling, Bian Kai, Niu Xiaojun, Niu Fei, Hu Jing, 2023. Characteristics of the Terrestrial Heat Flow and Lithospheric Thermal Structure in Central Cangxian Uplift: A Case Study of Xianxian Geothermal Field. Earth Science, 48(3): 988-1001. doi: 10.3799/dqkx.2022.070
    Citation: Duan Hexiao, Liu Yanguang, Wang Guiling, Bian Kai, Niu Xiaojun, Niu Fei, Hu Jing, 2023. Characteristics of the Terrestrial Heat Flow and Lithospheric Thermal Structure in Central Cangxian Uplift: A Case Study of Xianxian Geothermal Field. Earth Science, 48(3): 988-1001. doi: 10.3799/dqkx.2022.070

    Characteristics of the Terrestrial Heat Flow and Lithospheric Thermal Structure in Central Cangxian Uplift: A Case Study of Xianxian Geothermal Field

    doi: 10.3799/dqkx.2022.070
    • Received Date: 2022-02-25
      Available Online: 2023-03-27
    • Publish Date: 2023-03-25
    • Understanding the lithospheric thermal structure is an important basis for understanding the continental dynamics (i.e., tectonic deformation and evolution) of the continental lithosphere. It is also the core of studies on the thermal source mechanisms of geothermal fields. Most importantly, it can provide scientific guidance for the exploration and development of deep geothermal resources. The Cangxian uplift enjoys rich geothermal resources and favorable geothermal geological conditions. However, its lithospheric thermal structure is still unclear, which restricts the exploration and development of regional geothermal resources. Focusing on the Xianxian geothermal field in the middle part of the Cangxian uplift through the temperature measurement of a 4 000 m deep well and fine tests of geotechnical thermophysical properties, this study has ascertained the characteristics of the terrestrial heat flow and lithospheric thermal structure in the study area, thus filling the gap in terrestrial heat flow measurement. Moreover, this study has established a conceptual model of the lithospheric thermal structure of the study area and estimated the deep temperature and lithospheric thickness in the study area. The results show that the Xianxian geothermal field has a heat flow of 70.58 mW/m2, a burial depth of the Curie surface of about 24 km, a Moho temperature of about 749 ℃, and a lithospheric thickness of about 85-96 km.

       

    • loading
    • Anand, J., Somerton, W. H., Gomaa, E., 1973. Predicting Thermal Conductivities of Formations from other Known Properties. Society of Petroleum Engineers Journal, 13(5): 267-273. https://doi.org/10.2118/4171⁃pa
      Artemieva, I. M., Mooney, W. D., 2001. Thermal Thickness and Evolution of Precambrian Lithosphere: A Global Study. Journal of Geophysical Research: Solid Earth, 106(B8): 16387-16414. https://doi.org/10.1029/2000JB900439
      Cermak, V., Rybach, L., 1982. Thermal Conductivity and Specific Heat of Minerals and Rocks. In: Hellwege, K., Angenheister, G., ed., Physical Properties of Rocks. Springer, Berlin.
      Chi, Q. H., Yan, M. C., 1998. Radioactive Elements of Rocks in North China Platform and the Thermal Structure and Temperature Distribution of the Modern Continental Lithosphere. Chinese Journal of Geophysics, 41(1): 38-48 (in Chinese with English abstract).
      Clauser, C., Villinger, H., 1990. Analysis of Conductive and Convective Heat Transfer in a Sedimentary Basin, Demonstrated for the Rheingraben. Geophysical Journal International, 100(3): 393-414. https://doi.org/10.1111/j.1365⁃246X.1990.tb00693.x
      Cui, Y., Zhu, C. Q., Qiu, N. S., et al., 2020. Geothermal Lithospheric Thickness in the Central Jizhong Depression and Its Geothermal Significance. Acta Geologica Sinica, 94(7): 1960-1969 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2020.07.005
      Ding, Z. Y., Wang, L. S., Hu, W. X., et al., 2008. Reconstruction of Cenozoic Thermal History of Bohai Bay Basin with a Transient Heat Flow Model. Acta Petrolei Sinica, 29(5): 650-656 (in Chinese with English abstract). doi: 10.3321/j.issn:0253-2697.2008.05.004
      Duan, Y. H., Liu, B. J., Zhao, J. R., et al., 2015. 2⁃D P⁃Wave Velocity Structure of Lithosphere in the North China Tectonic Zone: Constraints from the Yancheng⁃Baotou Deep Seismic Profile. Science in China (Series D), 45(8): 1183-1197 (in Chinese).
      Feng, C. G., Liu, S. W., Wang, L. S., et al., 2009. Present⁃Day Geothermal Regime in Tarim Basin, Northwest China. Chinese Journal of Geophysics, 52(11): 2752-2762 (in Chinese with English abstract).
      Furlong, K. P., Chapman, D. S., 2013. Heat Flow, Heat Generation, and the Thermal State of the Lithosphere. Annual Review of Earth and Planetary Sciences, 41(1): 385-410. https://doi.org/10.1146/annurev.earth.031208.100051
      Gong, Y. L., Wang, L. S., Liu, S. W., 2011. The Thermal Structure and Thermal Evolution of Bohai Bay Basin in East China. Atomic Energy Press, Beijing (in Chinese).
      He, L. J., Hu, S. B., Huang, S. P., et al., 2008. Heat Flow Study at the Chinese Continental Scientific Drilling Site: Borehole Temperature, Thermal Conductivity, and Radiogenic Heat Production. Journal of Geophysical Research Atmospheres, 113(B2): B02404. https://doi.org/10.1029/2007jb004958
      Hou, G. T., Qian, X. L., Cai, D. S., 2001. The Tectonic Evolution of Bohai Basin in Mesozoic and Cenozoic Time. Acta Scicentiarum Naturalum Universitis Pekinesis, 37(6): 845-851 (in Chinese with English abstract).
      Huang, F., He, L. J., Wu, Q. J., 2015. Lithospheric Thermal Structure of the Ordos Basin and Its Implications to Destruction of the North China Craton. Chinese Journal of Geophysics, 58(10): 3671-3686 (in Chinese with English abstract).
      Hyndman, R. D., Lambert, I. B., Heier, K. S., et al., 1968. Heat Flow and Surface Radioactivity Measurements in the Precambrian Shield of Western Australia. Physics of the Earth and Planetary Interiors, 1(2): 129-135. https://doi.org/10.1016/0031⁃9201(68)90057⁃5
      Jia, S. X., Zhang, X. K., 2005. Crustal Structure and Comparison of Different Tectonic Blocks in North China. Chinese Journal of Geophysics, 48(3): 611-620 (in Chinese with English abstract). doi: 10.1002/cjg2.694
      Lachenbruch, A. H., 1970. Crustal Temperature and Heat Production: Implications of the Linear Heat⁃Flow Relation. Journal of Geophysical Research Atmospheres, 75(17): 3291-3300. https://doi.org/10.1029/jb075i017p03291
      Lachenbruch, A. H., Sass, J. H., 1977. Heat Flow in the United States and the Thermal Regime of the Crust. In: Spilhaus, A. F., Managing, J., eds., The Earth's Crust, Its Nature and Physical Properties. Geophysical Monograph, 20: 332-359. https://doi.org/10.1029/GM020p0626
      Li, C., Chen, S. Y., Lou, D., et al., 2021. Geochemical Characteristics and Signatures of Mesozoic Sandstones from Huanghua Depression. Earth Science, 46(8): 2903-2918 (in Chinese with English abstract).
      Liu, F., Wang, G. L., Zhang, W., et al., 2020. Terrestrial Heat Flow and Lithospheric Thermal Structure in the Middle Yanshan Region: A Case Study from the Qijia⁃Maojingba Geothermal Field in Chengde. Acta Geologica Sinica, 94(7): 1950-1959 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2020.07.004
      Morgan, P., 1984. The Thermal Structure and Thermal Evolution of the Continental Lithosphere. Physics and Chemistry of the Earth, 15: 107-193. https://doi.org/10.1016/0079⁃1946(84)90006⁃5
      Njiteu Tchoukeu, C. D., Basseka, C. A., Djomani, Y. P., et al., 2021. Crustal Thickness, Depth to the Bottom of Magnetic Sources and Thermal Structure of the Crust from Cameroon to Central African Republic: Preliminary Results for a Better Understanding of the Origin of the Bangui Magnetic Anomaly. Journal of African Earth Sciences, 179: https://doi.org/10.1016/j.jafrearsci.2021.104206
      Pribnow, D., Williams, C. F., Sass, J. H., et al., 2013. Thermal Conductivity of Water⁃Saturated Rocks from the KTB Pilot Hole at Temperatures of 25 to 300 ℃. Geophysical Research Letters, 23(4): 391-394. https://doi.org/10.1029/95GL00253
      Qiu, N. S., Wei, G., Li, C. C., et al., 2009. Distribution Features of Current Geothermal Field in the Bohai Sea Waters. Oil & Gas Geology, 30(4): 412-419 (in Chinese with English abstract).
      Qiu, N. S., Zuo, Y. H., Chang, J., et al., 2014. Geothermal Evidence of Meso⁃Cenozoic Lithosphere Thinning in the Jiyang Sub⁃Basin, Bohai Bay Basin, Eastern North China Craton. Gondwana Research, 26(3-4): 1079-1092. https://doi.org/10.1016/j.gr.2013.08.011
      Qiu, N. S., Zuo, Y. H., Chang, J., et al., 2015. Characteristics of Meso⁃Cenozoic Thermal Regimes in Typical Eastern and Western Sedimentary Basins of China. Earth Science Frontiers, 22(1): 157-168 (in Chinese with English abstract).
      Rao, S., Hu, S. B., Zhu, C. Q., et al., 2013. The Characteristics of Heat Flow and Lithospheric Thermal Structure in Junggar Basin, Northwest China. Chinese Journal of Geophysics, 56(8): 2760-2770 (in Chinese with English abstract).
      Rao, S., Jiang, G. Z., Gao, Y. J., et al., 2016. The Thermal Structure of the Lithosphere and Heat Source Mechanism of Geothermal Field in Weihe Basin. Chinese Journal of Geophysics, 59(6): 2176-2190 (in Chinese with English abstract).
      Rudnick, R. L., McDonough, W. F., O'Connell, R. J., 1998. Thermal Structure, Thickness and Composition of Continental Lithosphere. Chemical Geology, 145(3-4): 395-411. https://doi.org/10.1016/S0009⁃2541(97)00151⁃4
      Rybach, L., 1976. Radioactive Heat Production in Rocks and Its Relation to other Petrophysical Parameters. Pure and Applied Geophysics, 114(2): 309-317. https://doi.org/10.1007/BF00878955
      Rybach, L., Buntebarth, G., 1984. The Variation of Heat Generation, Density and Seismic Velocity with Rock Type in the Continental Lithosphere. Tectonophysics, 103(1-4): 335-344. doi: 10.1016/0040-1951(84)90095-7
      Sass, J. H., Lachenbruch, A. H., Moses, T. H. Jr, et al., 1992. Heat Flow from a Scientific Research Well at Cajon Pass, California. Journal of Geophysical Research Atmospheres, 97(B4): 5017. https://doi.org/10.1029/91jb01504
      Schintgen, T., Förster, A., Förster, H. J., et al., 2015. Surface Heat Flow and Lithosphere Thermal Structure of the Rhenohercynian Zone in the Greater Luxembourg Region. Geothermics, 56: 93-109. https://doi.org/10.1016/j.geothermics.2015.03.007
      Shi, Y. Z., Rop, E., Wang, Z. C., et al., 2021. Characteristics and Formation Mechanism of the Olkaria Geothermal System, Kenya Revealed by Well Temperature Data. Geothermics, 97: 102243. https://doi.org/10.1016/j.geothermics.2021.102243
      Wang, D. Y., Luo, Z. J., Liu, C. Y., 1997. Palaeozoic Hydrocaron Potential Evaluation for Cangxian Uplift. Petroleum Exploration and Development, 24(4): 8-11 (in Chinese with English abstract).
      Wang, L. S., Liu, S. W., Xiao, W. Y., et al., 2002. Distribution Feature of Terrestrial Heat Flow Densities in the Bohai Basin, East China. Chinese Science Bulletin, 47(2): 151-155 (in Chinese). doi: 10.1360/csb2002-47-2-151
      Wang, Z. T., Zhang, C., Jiang, G. Z., et al., 2019. Present⁃Day Geothermal Field of Xiongan New Area and Its Heat Source Mechanism. Chinese Journal of Geophysics, 62(11): 4313-4322 (in Chinese with English abstract).
      Xue, Y. A., Zhao, M., Liu, X. J., 2021. Reservoir Characteristics and Controlling Factors of the Metamorphic Buried Hill of Bozhong Sag, Bohai Bay Basin. Journal of Earth Science, 32(4): 919-926. https://doi.org/10.1007/s12583⁃021⁃1415⁃1
      Zhang, B. H., Zhang, J., Qu, J. F., et al., 2021. Lüliangshan: A Mesozoic Basement Involved Fold System in the Central North China Craton. Earth Science, 46(7): 2423-2448 (in Chinese with English abstract).
      Zhang, C., Jiang, G. Z., Shi, Y. Z., et al., 2018. Terrestrial Heat Flow and Crustal Thermal Structure of the Gonghe⁃Guide Area, Northeastern Qinghai⁃Tibetan Plateau. Geothermics, 72: 182-192. https://doi.org/10.1016/j.geothermics.2017.11.011
      迟清华, 鄢明才, 1998. 华北地台岩石放射性元素与现代大陆岩石圈热结构和温度分布. 地球物理学报, 41(1): 38-48. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX199801004.htm
      崔悦, 朱传庆, 邱楠生, 等, 2020. 冀中坳陷中部现今岩石圈厚度及地热学意义探讨. 地质学报, 94(7): 1960-1969. doi: 10.3969/j.issn.0001-5717.2020.07.005
      丁增勇, 王良书, 胡文瑄, 等, 2008. 利用岩石圈瞬态热流模型重建渤海湾盆地新生代热历史. 石油学报, 29(5): 650-656. doi: 10.3321/j.issn:0253-2697.2008.05.004
      段永红, 刘保金, 赵金仁, 等, 2015. 华北构造区岩石圈二维P波速度结构特征: 来自盐城‒包头深地震测深剖面的约束. 中国科学(D辑), 45(8): 1183-1197. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201508008.htm
      冯昌格, 刘绍文, 王良书, 等, 2009. 塔里木盆地现今地热特征. 地球物理学报, 52(11): 2752-2762. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200911011.htm
      龚育龄, 王良书, 刘绍文, 2011. 中国东部渤海湾盆地热结构和热演化. 北京: 原子能出版社.
      侯贵廷, 钱祥麟, 蔡东升, 2001. 渤海湾盆地中、新生代构造演化研究. 北京大学学报(自然科学版), 37(6): 845-851. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ200106016.htm
      黄方, 何丽娟, 吴庆举, 2015. 鄂尔多斯盆地深部热结构特征及其对华北克拉通破坏的启示. 地球物理学报, 58(10): 3671-3686. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201510020.htm
      嘉世旭, 张先康, 2005. 华北不同构造块体地壳结构及其对比研究. 地球物理学报, 48(3): 611-620. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200503018.htm
      李晨, 陈世悦, 楼达, 等, 2021. 黄骅坳陷中生界砂岩地球化学特征及意义. 地球科学, 46(8): 2903-2918. doi: 10.3799/dqkx.2020.325
      刘峰, 王贵玲, 张薇, 等, 2020. 燕山中部大地热流及岩石圈热结构特征: 以承德市七家‒茅荆坝地热田为例. 地质学报, 94(7): 1950-1959. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202007004.htm
      邱楠生, 魏刚, 李翠翠, 等, 2009. 渤海海域现今地温场分布特征. 石油与天然气地质, 30(4): 412-419. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200904008.htm
      邱楠生, 左银辉, 常健, 等, 2015. 中国东西部典型盆地中‒新生代热体制对比. 地学前缘, 22(1): 157-168. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201501015.htm
      饶松, 胡圣标, 朱传庆, 等, 2013. 准噶尔盆地大地热流特征与岩石圈热结构. 地球物理学报, 56(8): 2760-2770. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201308025.htm
      饶松, 姜光政, 高雅洁, 等, 2016. 渭河盆地岩石圈热结构与地热田热源机理. 地球物理学报, 59(6): 2176-2190. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201606022.htm
      王定一, 罗铸金, 刘池阳, 1997. 沧县隆起地区古生界油气远景评价. 石油勘探与开发, 24(4): 8-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK199704003.htm
      王良书, 刘绍文, 肖卫勇, 等, 2002. 渤海盆地大地热流分布特征. 科学通报, 47(2): 151-155. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200202018.htm
      王朱亭, 张超, 姜光政, 等, 2019. 雄安新区现今地温场特征及成因机制. 地球物理学报, 62(11): 4313-4322. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201911026.htm
      张北航, 张进, 曲军峰, 等, 2021. 吕梁山——华北克拉通中部中生代基底卷入褶皱系统. 地球科学, 46(7) : 2423-2448. doi: 10.3799/dqkx.2020.235
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(4)

      Article views (1524) PDF downloads(114) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return