• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 1
    Jan.  2024
    Turn off MathJax
    Article Contents
    Ren Wenxiu, Han Lei, Wu Guangtao, Tang Deliang, Sun Bainian, Wu Jingyu, 2024. Discovery of Early Cretaceous Ginkgoites in Beishan, Gansu Province: Also on Changes of Paleoatmospheric CO2 in Jurassic to Cretaceous in Gansu Province. Earth Science, 49(1): 209-223. doi: 10.3799/dqkx.2022.075
    Citation: Ren Wenxiu, Han Lei, Wu Guangtao, Tang Deliang, Sun Bainian, Wu Jingyu, 2024. Discovery of Early Cretaceous Ginkgoites in Beishan, Gansu Province: Also on Changes of Paleoatmospheric CO2 in Jurassic to Cretaceous in Gansu Province. Earth Science, 49(1): 209-223. doi: 10.3799/dqkx.2022.075

    Discovery of Early Cretaceous Ginkgoites in Beishan, Gansu Province: Also on Changes of Paleoatmospheric CO2 in Jurassic to Cretaceous in Gansu Province

    doi: 10.3799/dqkx.2022.075
    • Received Date: 2022-01-18
      Available Online: 2024-01-24
    • Publish Date: 2024-01-25
    • Epidermal features of fossil ginkgophyta are one of the good materials for estimating the paleoatmospheric CO2 concentration. In this study, a fossil Ginkgoites species, Ginkgoites sibirica is firstly described based on leaf morphology and epidermal features from the Lower Cretaceous Chijinbao Formation in the Zhongkouzi Basin, Beishan area, Northwest China. The paleo-CO2 was 766-1 277 ppmv during the Hauterivian to Barremian based on the stomatal ratio method, which is consistent with the results of other studies. The CO2 variation trend during the Early Jurassic to the Early Cretaceous is reconstructed based on the leaf gas-exchange model in combination with previous data. The paleo-CO2 was 643-1 136 ppmv during the Jurassic and 548 ppmv during the Hauterivian to Barremian. The results show that the CO2 concentration was high in the Early and Middle Jurassic, with a decreasing trend toward the Cretaceous, and then showed a significant increase during Early and Middle Cretaceous. The paleo-CO2 reached its peak during the late Early Cretaceous, and then decreased significantly afterwards. Studies have shown that the leaf gas-exchange model can be an effective proxy for reconstructing paleoclimate.

       

    • loading
    • Aucour, A. M., Gomez, B., Sheppard, S. M. F., et al., 2008. δ13C and Stomatal Number Variability in the Cretaceous Conifer Frenelopsis. Palaeogeography, Palaeoclimatology, Palaeoecology, 257(4): 462-473. https://doi.org/10.1016/j.palaeo.2007.10.027
      Beerling, D. J., Royer, D. L., 2002. Fossil Plants as Indicators of the Phanerozoic Global Carbon Cycle. Annual Review of Earth and Planetary Sciences, 30: 527-556. https://doi.org/10.1146/annurev.earth.30.091201.141413
      Bergman, N. M., Lenton, T. M., Watson, A. J., 2004. COPSE: A New Model of Biogeochemical Cycling over Phanerozoic Time. American Journal of Science, 304(5): 397-437. https://doi.org/10.2475/ajs.304.5.397
      Berner, R. A., 1994. GEOCARB Ⅱ: A Revised Model of Atmospheric CO2 over Phanerozoic Time. American Journal of Science, 294(1): 56-91. https://doi.org/10.2475/ajs.294.1.56
      Chen, L. Q., Li, C. S., Chaloner, W. G., et al., 2001. Assessing the Potential for the Stomatal Characters of Extant and Fossil Ginkgo Leaves to Signal Atmospheric CO2 Change. American Journal of Botany, 88(7): 1309-1315. https://doi.org/10.2307/3558342
      Deng, S. H., 1997. Early Cretaceous Flora of Hailar, Inner Mongolia, China. Geological Publishing House, Beijing, 251-255 (in Chinese).
      Du, B. X., Sun, B. N., Zhang, M. Z., et al., 2016. Atmospheric Palaeo-CO2 Estimates Based on the Carbon Isotope and Stomatal Data of Cheirolepidiaceae from the Lower Cretaceous of the Jiuquan Basin, Gansu Province. Cretaceous Research, 62: 142-153. https://doi.org/10.1016/j.cretres.2015.07.020
      Franks, P. J., Beerling, D. J., 2009. Maximum Leaf Conductance Driven by CO2 Effects on Stomatal Size and Density over Geologic Time. Proceedings of the National Academy of Sciences of the United States of America, 106(25): 10343-10347. https://doi.org/10.1073/pnas.0904209106
      Franks, P. J., Royer, D. L., Beerling, D. J., et al., 2014. New Constraints on Atmospheric CO2 Concentration for the Phanerozoic. Geophysical Research Letters, 41(13): 4685-4694. https://doi.org/10.1002/2014gl060457
      Hansen, K. W., Wallmann, K., 2003. Cretaceous and Cenozoic Evolution of Seawater Composition, Atmospheric O2 and CO2: A Model Perspective. American Journal of Science, 303(2): 94-148. https://doi.org/10.2475/ajs.303.2.94
      Haworth, M., Hesselbo, S. P., McElwain, J. C., et al., 2005. Mid-Cretaceous pCO2 Based on Stomata of the Extinct Conifer Pseudofrenelopsis (Cheirolepidiaceae). Geology, 33(9): 749-752. https://doi.org/10.1130/g21736.1
      Heer, O., 1876. Beiträge zur Jura-Flora Ostsibiriens und des Amurlandes. Académie Impériale des Sciences, 22(2): 1-122.
      Huang, C. M., Retallack, G. J., Wang, C. S., 2012. Early Cretaceous Atmospheric pCO2 Levels Recorded from Pedogenic Carbonates in China. Cretaceous Research, 33(1): 42-49. https://doi.org/10.1016/j.cretres.2011.08.001
      Jin, P. H., 2018. Early Cretaceous Plant Fossils and Paleoecological Characteristics in Laiyang, Shandong Province (Dissertation). Lanzhou University, Lanzhou (in Chinese with English abstract).
      Lei, X. T., Du, Z., Du, B. X., et al., 2018. Middle Cretaceous pCO2 Variation in Yumen, Gansu Province and Its Response to the Climate Events. Acta Geologica Sinica (English Edition), 92(2): 801-813. https://doi.org/10.1111/1755-6724.13555
      Li, H. W., Dong, M., Tian, N., et al., 2022. Paleoenvironmental Implications of the Middle Jurassic Phoenicopsis Angustifolia Heer in Shaerhu, Xinjiang. Earth Science, 47(2): 532-543 (in Chinese with English abstract).
      Li, J., Yang, Q., Chen, H., et al., 2019. The Middle Jurassic Ginkgophyte Fossils from Huating, Gansu and Their Stomatal Parameters Responding to Paleoatmospheric CO2. Journal of Lanzhou University (Natural Sciences), 55(5): 561-570 (in Chinese with English abstract).
      Li, Y. X., Kang, Z. Q., Xu, J. F., et al., 2023. Chronological, Geochemical Characteristics and Geological Significance of Volcanic Rocks in the Late Early Cretaceous in Southeast Guangxi. Earth Science, 48(8): 2872-2887 (in Chinese with English abstract).
      Lin, Z. C., Sun, B. N., Wu, J. Y., et al., 2012. New Proxy for Atmospheric Paleo-CO2 Level during Phanerozoic: Carbon Isotope Discrimination of Fossil Liverworts. Earth Science, 37(1): 145-155 (in Chinese with English abstract).
      Passalia, M. G., 2009. Cretaceous pCO2 Estimation from Stomatal Frequency Analysis of Gymnosperm Leaves of Patagonia, Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology, 273(1-2): 17-24. https://doi.org/10.1016/j.palaeo.2008.11.010
      Quan, C., Sun, C. L., Sun, Y. W., et al., 2009. High Resolution Estimates of Paleo-CO2 Levels through the Campanian (Late Cretaceous) Based on Ginkgo Cuticles. Cretaceous Research, 30(2): 424-428. https://doi.org/10.1016/j.cretres.2008.08.004
      Quan, C., Zhang, L., 2005. An Analysis of the Early Paleogene Climate of the Jiayin Area, Heilongjiang Province. Geological Review, 51(1): 10-15 (in Chinese with English abstract).
      Ren, W. X., Sun, B. N., Li, X. C., et al., 2008. Microstructures of Two Species of Cheirolepidiaceae from Cretaceous in Zhejiang, China and Its Paleoenvironmental Significance. Acta Geologica Sinica, 82(5): 577-583 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2008.05.001
      Retallack, G. J., 2001. A 300-Million-Year Record of Atmospheric Carbon Dioxide from Fossil Plant Cuticles. Nature, 411(6835): 287-290. https://doi.org/10.1038/35077041
      Retallack, G. J., 2009. Greenhouse Crises of the Past 300 Million Years. Geological Society of America Bulletin, 121(9-10): 1441-1455. https://doi.org/10.1130/b26341.1
      Robinson, S. A., Andrews, J. E., Hesselbo, S. P., et al., 2002. Atmospheric pCO2 and Depositional Environment from Stable-Isotope Geochemistry of Calcrete Nodules (Barremian, Lower Cretaceous, Wealden Beds, England). Journal of the Geological Society, 159(2): 215-224. https://doi.org/10.1144/0016-764901-015
      Seward, A. C., 1919. Fossil Plants: A Text-Book for Students of Botany and Geology. Cambridge University Press, London.
      Si, X. J., 1959. Jurassic Flora of Qaidam, Qinghai Province. Acta Palaeontologica Sinica, 7(1): 1-31 (in Chinese).
      Si, X. J., Li, X. X., 1963. Mesozoic Plants of China (Fossil Plants of China). Science Press, Beijing (in Chinese).
      Sun, B. N., Xiao, L. A., Xie, S. P., et al., 2007. Quantitative Analysis of Paleoatmospheric CO2 Level Based on Stomatal Characters of Fossil Ginkgo from Jurassic to Cretaceous in China. Acta Geologica Sinica (English Edition), 81(6): 931-939. https://doi.org/10.1111/j.1755-6724.2007.tb01016.x
      Sun, B. N., Xie, S. P., Yan, D. F., et al., 2008. Fossil Plant Evidence for Early and Middle Jurassic Paleoenvironmental Changes in Lanzhou Area, Northwest China. Palaeoworld, 17(3-4): 215-221. https://doi.org/10.1016/j.palwor.2008.09.002
      Wallmann, K., 2001. Controls on the Cretaceous and Cenozoic Evolution of Seawater Composition, Atmospheric CO2 and Climate. Geochimica et Cosmochimica Acta, 65(18): 3005-3025. https://doi.org/10.1016/S0016-7037(01)00638-X
      Wang, J., Ren, W. X., Li, T. G., et al., 2020. Environment and Tectonic Evolution during Early Cretaceous in Yumen Basin: Evidence from Silicified Woods in Northern Margin of Tibetan Plateau. Earth Science, 45(11): 4143-4152 (in Chinese with English abstract).
      Wang, Y. D., Huang, C. M., Sun, B. N., et al., 2014. Paleo-CO2 Variation Trends and the Cretaceous Greenhouse Climate. Earth-Science Reviews, 129: 136-147. https://doi.org/10.1016/j.earscirev.2013.11.001
      Wu, J. Y., Ding, S. T., Li, Q. J., et al., 2016. Reconstructing Paleoatmospheric CO2 Levels Based on Fossil Ginkgoites from the Upper Triassic and Middle Jurassic in Northwest China. Paläontologische Zeitschrift, 90(2): 377-387. https://doi.org/10.1007/s12542-016-0300-1
      Yang, S., Sun, B. N., Shen, G. L., 1988. New Materials of Ginkgoites from Jurassic in Vicinity of Lanzhou, Gansu. Journal of Lanzhou University, 24(S1): 70-77 (in Chinese with English abstract).
      Yang, X. J., 2004. Ginkgoites myrioneurus sp. nov. and Associated Shoots from the Lower Cretaceous of the Jixi Basin, Heilongjiang, China. Cretaceous Research, 25(5): 739-748. https://doi.org/10.1016/j.cretres.2004.06.006
      Yang, X. J., Wu, X. W., Zhou, Z. Y., 2014. On the Nomenclatural Problems of Some Chinese Ginkgoalean Fossil Plants. Acta Palaeontologica Sinica, 53(3): 263-273.
      Zhang, M. Z., 2014. Environmental and Ecological Evolution Recorded by Sporopollen Flora in East Asia Continent in Late Mesozoic (Dissertation). Lanzhou University, Lanzhou (in Chinese with English abstract).
      Zhang, W., Zhang, Z. C., Zheng, S. L., 1980. Paleontological Atlas of Northeast China, Ⅱ. Mesozoic Cenozoic. Geological Publishing House, Beijing (in Chinese).
      Zheng, S. L., Zhang, W., 1982. Fossil Plants from Longzhaogou and Jixi Groups in Eastern Heilongjiang Province. Bulletin of the Shenyang Institute of Geology and Mineral Resources, 5: 277-349 (in Chinese with English abstract).
      Zhou, Z. Y., Yang, X. J., Wu, X. W., 2020. Palaeobotanica Sinica: Ginkgophytes. Science Press, Beijing (in Chinese).
      邓胜徽, 1997. 内蒙古海拉尔地区早白垩世植物群. 北京: 地质出版社, 251-255.
      金培红, 2018. 山东莱阳早白垩世植物化石及古生态特征(博士学位论文). 兰州: 兰州大学.
      栗惠文, 董曼, 田宁, 等, 2022. 新疆沙尔湖中侏罗世狭叶拟刺葵(Phoenicopsis angustifolia Heer)的古环境意义. 地球科学, 47(2): 532-543. doi: 10.3799/dqkx.2021.165
      李军, 杨倩, 陈慧, 等, 2019. 甘肃华亭中侏罗世银杏类化石及其气孔参数对古大气CO2的响应. 兰州大学学报(自然科学版), 55(5): 561-570.
      李衣鑫, 康志强, 许继峰, 等, 2023. 桂东南早白垩世晚期火山岩年代学、地球化学特征及地质意义. 地球科学, 48(8): 2872-2887. doi: 10.3799/dqkx.2021.219
      林志成, 孙柏年, 吴靖宇, 等, 2012. 恢复地史时期大气CO2浓度的新指标: 苔藓植物化石. 地球科学, 37(1): 145-155. doi: 10.3799/dqkx.2012.014
      全成, 张林, 2005. 黑龙江嘉荫地区古近纪早期古气候分析. 地质论评, 51(1): 10-15.
      任文秀, 孙柏年, 李相传, 等, 2008. 浙江白垩系两种掌鳞杉科化石微细结构及其古环境意义. 地质学报, 82(5): 577-583.
      斯行健, 1959. 青海柴达木侏罗纪植物群. 古生物学报, 7(1): 1-31.
      斯行健, 李星学, 1963. 中国中生代植物(中国植物化石第二册). 北京: 科学出版社.
      王军, 任文秀, 李通国, 等, 2020. 青藏高原北缘玉门红柳峡硅化木成因及其揭示的早白垩世构造及环境. 地球科学, 45(11): 4143-4152. doi: 10.3799/dqkx.2020.002
      杨恕, 孙柏年, 沈光隆, 1988. 兰州地区侏罗纪似银杏属的新材料. 兰州大学学报, 24(S1): 70-77.
      张明震, 2014. 晚中生代东亚大陆内部孢粉植物群记录的环境、生态演化(博士学位论文). 兰州: 兰州大学.
      张武, 张志诚, 郑少林, 1980. 东北地区古生物图册(二): 中新生代分册. 北京: 地质出版社.
      郑少林, 张武, 1982. 黑龙江省东部龙爪沟群及鸡西群植物化石. 沈阳地质矿产研究所所刊, 5: 277-349.
      周志炎, 杨小菊, 吴向午, 2020. 中国古植物志·银杏植物. 北京: 科学出版社.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(5)  / Tables(6)

      Article views (706) PDF downloads(62) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return