• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 3
    Mar.  2024
    Turn off MathJax
    Article Contents
    Qin Ya, Yang Junru, Feng Zuohai, Zhu Jiaming, Ni Zhanxu, Huang Yonggao, Wu Jie, Zhou Yun, Liu Yizhi, Bai Yuming, 2024. Mineralogy and Mineral Chemistry of the Luojiashan Gabbro in the Yingyangguan Area of Northeastern Guangxi and Its Tectonic Significance. Earth Science, 49(3): 803-821. doi: 10.3799/dqkx.2022.096
    Citation: Qin Ya, Yang Junru, Feng Zuohai, Zhu Jiaming, Ni Zhanxu, Huang Yonggao, Wu Jie, Zhou Yun, Liu Yizhi, Bai Yuming, 2024. Mineralogy and Mineral Chemistry of the Luojiashan Gabbro in the Yingyangguan Area of Northeastern Guangxi and Its Tectonic Significance. Earth Science, 49(3): 803-821. doi: 10.3799/dqkx.2022.096

    Mineralogy and Mineral Chemistry of the Luojiashan Gabbro in the Yingyangguan Area of Northeastern Guangxi and Its Tectonic Significance

    doi: 10.3799/dqkx.2022.096
    • Received Date: 2022-02-06
      Available Online: 2024-04-12
    • Publish Date: 2024-03-25
    • In this paper, the geochronology, mineralogy and mineral chemistry of Luojiashan gabbro in Yingyangguan area of northeastern Guangxi were studied, to constrain the regional tectonic background. The main mineral compositions of Luojiashan gabbro are clinopyroxene (Cpx) and plagioclase (Pl). The clinopyroxene of Luojiashan gabbro is characterized by high Fe, Al, and low Ca, Na, Ti, and its composition is Wo27-31En36-47Fs21-32, which belongs to augite. Plagioclase is characterized by high Si, Al, Na, and low Ca, K, and its composition is An0-3Ab96-100Or0-2, which belongs to albite. According to the chemical composition of clinopyroxene, the parental magma of the Luojiashan gabbro should belong to tholeiitic series. The crystallization temperature and pressure of clinopyroxene were estimated by the clinopyroxene-melt equilibrium and clinopyroxene isotherm, which yielded crystallization temperature of 1 282-1 292 ℃, with an average of 1 287 ℃. The pressures are 1.53-2.37 GPa, with an average of 2.02 GPa, and corresponding to a formation depth of 50.49-78.21 km, with an average of 66.80 km. The Luojiashan gabbro was formed at (768.9±6.8) Ma based on LA-ICP-MS zircon U-Pb dating. The chemical composition of clinopyroxene indicates that Luojiashan gabbro is a typical intraplate tholeiite. Combined with the characteristics of regional tectonic evolution, it is inferred that the Luojiashan gabbro in northeastern Guangxi originated from the extensional rift tectonic background of lithosphere thinning and mantle upwelling.

       

    • loading
    • Campbell, I. H., Borley, G. D., 1974. The Geochemistry of Pyroxenes from the Lower Layered Series of the Jimberlana Intrusion, Western Australia. Contributions to Mineralogy and Petrology, 47(4): 281-297. https://doi.org/10.1007/BF00390151
      Cui, X. Z., Jiang, X. S., Deng, Q., et al., 2016. Zircon U-Pb Geochronological Results of the Danzhou Group in Northern Guangxi and Their Implications for the Neoproterozoic Rifting Stages in South China. Geotectonica et Metallogenia, 40(5): 1049-1063 (in Chinese with English abstract).
      Deng, Q., Wang, J., Wang, Z. J., et al., 2016. Middle Neoproterozoic Magmatic Activities and Their Constraints on Tectonic Evolution of the Jiangnan Orogen. Geotectonica et Metallogenia, 40(4): 753-771 (in Chinese with English abstract).
      Ge, W. C., Li, X. H., Li, Z. X., et al., 2001. Mafic Intrusions in Longsheng Area: Age and Its Geological Implications. Chinese Journal of Geology, 36(1): 112-118 (in Chinese with English abstract). doi: 10.3321/j.issn:0563-5020.2001.01.013
      Kou, C. H., Liu, Y. X., Li, T. D., et al., 2016. Geochronology and Geochemistry of Neoproterozoic Ultrabasic Rocks in the Western Segment of Jiangnan Orogenic Belt and Constraints on Their Sources. Acta Petrologica et Mineralogica, 35(6): 947-964 (in Chinese with English abstract).
      Kou, C. H., Liu, Y. X., Li, T. D., et al., 2017a. Mineralogical Characteristics of Clinopyroxene from the Neoproterozoic Changjie Olivine Pyroxenolite in Tongdao County, Western Hunan: An Evidence for the Intraplate Rift Origin. Geological Review, 63(4): 881-893 (in Chinese with English abstract).
      Kou, C. H., Liu, Y. X., Li, T. D., et al., 2017b. Mineralogy and Mineral Chemistry of the Jinche Gabbro in the Longsheng Area of Northern Guangxi in the Western Segment of the Jiangnan Orogen and Its Geological Significance. Acta Petrologica et Mineralogica, 36(1): 20-35 (in Chinese with English abstract).
      Kou, C. H., Liu, Y. X., Li, T. D., et al., 2021. Petrogenesis and Tectonic Implications of the Neoproterozoic Mafic-Ultramafic Rocks in the Western Jiangnan Orogen: Insights from in Situ Analysis of Clinopyroxenes. Lithos, 392-393: 106156. https://doi.org/10.1016/j.lithos.2021.106156
      Kou, C. H., Zhang, Z. C., Liao, B. L., et al., 2011. Mineralogy of Clinopyroxene in Jianchuan Picritic Porphyrite of Western Yunnan Province and Its Geological Significance. Acta Petrologica et Mineralogica, 30(3): 449-462 (in Chinese with English abstract).
      Leterrier, J., Maury, R. C., Thonon, P., et al., 1982. Clinopyroxene Composition as a Method of Identification of the Magmatic Affinities of Paleo-Volcanic Series. Earth and Planetary Science Letters, 59(1): 139-154. https://doi.org/10.1016/0012-821X(82)90122-4
      Li, J. H., Mu, J., 1999. Tectonic Constraints from Chinese Cratonic Blocks for the Reconstruction of Rodinia. Chinese Journal of Geology, 34(3): 259-272 (in Chinese with English abstract). doi: 10.3321/j.issn:0563-5020.1999.03.001
      Li, W. X., Li, X. H., Li, Z. X., et al., 2008. Obduction-Type Granites within the NE Jiangxi Ophiolite: Implications for the Final Amalgamation between the Yangtze and Cathaysia Blocks. Gondwana Research, 13(3): 288-301. https://doi.org/10.1016/j.gr.2007.12.010
      Li, X. H., 1999. U-Pb Zircon Ages of Granites from the Southern Margin of the Yangtze Block: Timing of Neoproterozoic Jinning: Orogeny in SE China and Implications for Rodinia Assembly. Precambrian Research, 97(1-2): 43-57. https://doi.org/10.1016/S0301-9268(99)00020-0
      Li, X. H., Li, W. X., Li, Z. X., et al., 2009. Amalgamation between the Yangtze and Cathaysia Blocks in South China: Constraints from SHRIMP U-Pb Zircon Ages, Geochemistry and Nd-Hf Isotopes of the Shuangxiwu Volcanic Rocks. Precambrian Research, 174(1-2): 117-128. https://doi.org/10.1016/j.precamres.2009.07.004
      Li, X. H., Wang, X. C., Li, W. X., et al., 2008. Petrogenesis and Tectonic Significance of Neoproterozoic Basaltic Rocks in South China: From Orogenesis to Intracontinental Rifting. Geochimica, 37(4): 382-398 (in Chinese with English abstract).
      Li, Y. X., Yin, C. Q., Lin, S. F., et al., 2021. Geochronology and Geochemistry of Bimodal Volcanic Rocks from the Western Jiangnan Orogenic Belt: Petrogenesis, Source Nature and Tectonic Implication. Precambrian Research, 359: 106218. https://doi.org/10.1016/j.precamres.2021.106218
      Li, Z. X., Zhang, L. H., Powell, C. M., 1995. South China in Rodinia: Part of the Missing Link between Australia-East Antarctica and Laurentia? Geology, 23(5): 407-410. https://doi.org/10.1130/0091-7613(1995)0230407:scirpo>2.3.co;2 doi: 10.1130/0091-7613(1995)0230407:scirpo>2.3.co;2
      Liang, W. B., Guo, R. Q., Liu, G. P., et al., 2019. LA-ICP-MS Zircon U-Pb Age and Geochemistry of the Olivine Gabbro Dike in the Western Segment of Kuruktag, Xinjiang and Its Tectonic Significance. Bulletin of Geological Science and Technology, 38(1): 58-67 (in Chinese with English abstract).
      Lin, M. S., Peng, S. B., Jiang, X. F., et al., 2016. Geochemistry, Petrogenesis and Tectonic Setting of Neoproterozoic Mafic-Ultramafic Rocks from the Western Jiangnan Orogen, South China. Gondwana Research, 35: 338-356. https://doi.org/10.1016/j.gr.2015.05.015
      Lindsley, D. H., 1983. Pyroxene Thermometry. American Mineralogist, 68: 477-493.
      Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. https://doi.org/10.1093/petrology/egp082
      Liu, Y. Z., Qin, Y., Feng, Z. H., et al., 2021. New Geochronological and Geochemical Data of the Longsheng Mafic-Ultramafic Suite in Northern Guangxi, China, and Their Implications in Rodinia Breakup. Arabian Journal of Geosciences, 14(2): 1-18. https://doi.org/10.1007/s12517-020-06360-0
      Ludwig, K. R., 2003. User's Manual for Isoplot 3.0: A Geochronological Toolkit for Mircrosoft Excel. Berkeley Geochronology Center. Berkeley.
      McKenzie, D., Bickle, M. J., 1988. The Volume and Composition of Melt Generated by Extension of the Lithosphere. Journal of Petrology, 29(3): 625-679. https://doi.org/10.1093/petrology/29.3.625
      Morimoto, N., Pabries, J., Ferguson, K., et al., 1988. Nomenclature of Pyroxenes. Mineralogy and Petrology, 39(1): 55-76. https://doi.org/10.1007/BF01226262
      Nisbet, E. G., Pearce, J. A., 1977. Clinopyroxene Composition in Mafic Lavas from Different Tectonic Settings. Contributions to Mineralogy and Petrology, 63(2): 149-160. https://doi.org/10.1007/BF00398776
      Putirka, K. D., Mikaelian, H., Ryerson, F., et al., 2003. New Clinopyroxene-Liquid Thermobarometers for Mafic, Evolved, and Volatile-Bearing Lava Compositions, with Applications to Lavas from Tibet and the Snake River Plain, Idaho. American Mineralogist, 88(10): 1542-1554. https://doi.org/10.2138/am-2003-1017
      Qi, L., Xu, Y. J., Cawood, P. A., et al., 2021. Implications for Supercontinent Reconstructions of Mid-Late Neoproterozoic Volcanic-Sedimentary Rocks from the Cathaysia Block, South China. Precambrian Research, 354: 106056. https://doi.org/10.1016/j.precamres.2020.106056
      Qin, X. F., Wang, Z. Q., Wang, T., et al., 2015. The Reconfirmation of Age and Tectonic Setting of the Volcanic Rocks of Yingyangguan Group in the Eastern Guangxi: Constraints on the Structural Pattern of the Southwestern Segment of Qinzhou-Hangzhou Joint Belt. Acta Geoscientica Sinica, 36(3): 283-292 (in Chinese with English abstract).
      Qin, Y., Feng, Z. H., Wan, L., et al., 2022. LA-ICP-MS Zircon U-Pb Age of Shanglang Metamafic Rocks in Longsheng, Northern Guangxi and Its Geological Significance. Journal of Jilin University (Earth Science Edition), 52(1): 109-133 (in Chinese with English abstract).
      Qin, Y., Feng, Z. H., Huang, J. Z., et al., 2021. Discovery of Sanmen Ductile Shear Zone in North Guangxi and Its Tectonic Significances. Earth Science, 46(11): 4017-4032 (in Chinese with English abstract).
      Qiu, J. X., Liao, Q. A., 1996. Petrogenesis and Cpx Mineral Chemistry of Cenozoic Basalts from Zhejiang and Fujian of Eastern China. Volcanology & Mineral Resources, 17(S1): 16-25 (in Chinese with English abstract).
      Seyler, M., Bonatti, E., 1994. Na, AlIV and AlVI in Clinopyroxenes of Subcontinental and Suboceanic Ridge Peridotites: A Clue to Different Melting Processes in the Mantle? Earth and Planetary Science Letters, 122(3-4): 281-289. https://doi.org/10.1016/0012-821X(94)90002-7
      Simith, J. V., Brown, W. L., 1974. Feldspar Minerals. Springer-Verlag, Berlin.
      Streck, M. J., 2008. Mineral Textures and Zoning as Evidence for Open System Processes. Reviews in Mineralogy and Geochemistry, 69(1): 595-622. https://doi.org/10.2138/rmg.2008.69.15
      Su, H. M., Jiang, S. Y., Shao, J. B., et al., 2021. New Identification and Significance of Early Cretaceous Mafic Rocks in the Interior South China Block. Scientific Reports, 11: 11396. https://doi.org/10.1038/s41598-021-91045-1
      Sun, C. M., 1994. Genetic Mineralogy of Pyroxenes from the Yanbian Proterozoic Ophiolites (Sichuan, China), and Its Geotectonic Implications. Mineralogy and Petrology, 14(3): 1-15 (in Chinese with English abstract).
      Tian, Y., Wang, W., Wang, L. Z., et al., 2020. Age and Petrogenesis of the Yingyangguan Volcanic Rocks: Implications on Constraining the Boundary between Yangtze and Cathaysia Blocks, South China. Lithos, 376-377: 105775. https://doi.org/10.1016/j.lithos.2020.105775
      Vuorinen, J. H., Hålenius, U., Whitehouse, M. J., et al., 2005. Compositional Variations (Major and Trace Elements) of Clinopyroxene and Ti-Andradite from Pyroxenite, Ijolite and Nepheline Syenite, Alnö Island, Sweden. Lithos, 81(1-4): 55-77. https://doi.org/10.1016/j.lithos.2004.09.021
      Wang, J., Jiang, X. S., Zhuo, J. W., et al., 2019. Neoproterozoic Rift Basin Evolution and Lithofacies Paleogeography in South China. Science Press, Beijing (in Chinese).
      Wang, J., Liu, B. J., Pan, G. T., 2001. Neoproterozoic Rifting History of South China Significance to Rodinia Breakup. Mineralogy and Petrology, 21(3): 135-145 (in Chinese with English abstract).
      Wang, L. Z., Tian, Y., Li, X., et al., 2020. Composition and Deformation of the Yingyangguan Tectonic Mélange in Eastern Guangxi. Geotectonica et Metallogenia, 44(3): 340-356 (in Chinese with English abstract).
      Wang, L. Z., Tu, B., Tian, Y., et al., 2019. New Progress in 1: 50 000 Regional Geological and Mineral Survey in Yingyangguan Area, Eastern Guangxi. Geology and Mineral Resources of South China, 35(3): 283-292 (in Chinese with English abstract).
      Wang, P. M., Yu, J. H., Sun, T., et al., 2012. Geochemistry and Detrital Zircon Geochronology of Neoproterozoic Sedimentary Rocks in Eastern Hunan Province and Their Tectonic Significance. Acta Petrologica Sinica, 28(12): 3841-3857 (in Chinese with English abstract).
      Wang, X. C., Li, Z. X., Li, X. H., et al., 2011. Geochemical and Hf-Nd Isotope Data of Nanhua Rift Sedimentary and Volcaniclastic Rocks Indicate a Neoproterozoic Continental Flood Basalt Provenance. Lithos, 127(3-4): 427-440. https://doi.org/10.1016/j.lithos.2011.09.020
      Wang, X. L., Shu, L. S., Xing, G. F., et al., 2012. Post-Orogenic Extension in the Eastern Part of the Jiangnan Orogen: Evidence from Ca. 800-760 Ma Volcanic Rocks. Precambrian Research, 222-223: 404-423. https://doi.org/10.1016/j.precamres.2011.07.003
      Wang, X. L., Zhou, J. C., Griffin, W. L., et al., 2007. Detrital Zircon Geochronology of Precambrian Basement Sequences in the Jiangnan Orogen: Dating the Assembly of the Yangtze and Cathaysia Blocks. Precambrian Research, 159(1-2): 117-131. https://doi.org/10.1016/j.precamres.2007.06.005
      Wang, X. L., Zhou, J. C., Qiu, J. S., et al., 2006. LA-ICP-MS U-Pb Zircon Geochronology of the Neoproterozoic Igneous Rocks from Northern Guangxi, South China: Implications for Tectonic Evolution. Precambrian Research, 145(1-2): 111-130. https://doi.org/10.1016/j.precamres.2005.11.014
      Wang, Y. J., Zhang, F. F., Fan, W. M., et al., 2010. Tectonic Setting of the South China Block in the Early Paleozoic: Resolving Intracontinental and Ocean Closure Models from Detrital Zircon U-Pb Geochronology. Tectonics, 29(6): TC6020. https://doi.org/10.1029/2010TC002750
      Xu, X. S., Liu, W., Men, Y. P., et al., 2012. Probe into the Tectonic Nature of Neoproterozoic Southern Hunan-Northern Guangxi Marine Basin. Acta Geologica Sinica, 86(12): 1890-1904 (in Chinese with English abstract).
      Yin, F. G., Wan, F., Chen, M., 2003. The Multi-Arc Basin System on the South-Eastern Margin of the Pan-Cathaysian Continental Group. Journal of Chengdu University of Technology (Science & Technology Edition), 30(2): 126-131 (in Chinese with English abstract).
      Yin, H. F., Wu, S. B., Du, Y. S., et al., 1999. South China Defined as Part of Tethyan Archipelagic Ocean System. Earth Science, 24(1): 1-12 (in Chinese with English abstract).
      Zhang, C. L., Qin, Y., Feng, Z. H., et al., 2020. Chronological Characteristics and Significance of Diaozhushan Diabase in Longsheng, Northern Guangxi. Journal of Guilin University of Technology, 40(1): 1-14 (in Chinese with English abstract).
      Zhang, G. W., Guo, A. L., Wang, Y. J., et al., 2013. China South China Continental Structure and Problems. Science in China (Series D), 43(10): 1553-1582 (in Chinese).
      Zhang, Z. C., Mahoney, J. J., Mao, J. W., et al., 2006. Geochemistry of Picritic and Associated Basalt Flows of the Western Emeishan Flood Basalt Province, China. Journal of Petrology, 47(10): 1997-2019. https://doi.org/10.1093/petrology/egl034
      Zheng, Y. F., Wu, R. X., Wu, Y. B., et al., 2008. Rift Melting of Juvenile Arc-Derived Crust: Geochemical Evidence from Neoproterozoic Volcanic and Granitic Rocks in the Jiangnan Orogen, South China. Precambrian Research, 163(3-4): 351-383. https://doi.org/10.1016/j.precamres.2008.01.004
      Zhou, H. W., Li, X. H., Wang, H. R., et al., 2002. U-Pb Zircon Geochronology of Basic Volcanic Rocks of the Yingyangguan Group in Hezhou, Guangxi, and Its Tectonic Implications. Geological Review, 48(S1): 22-25 (in Chinese with English abstract). http://www.researchgate.net/publication/284108020_U-Pb_zircon_geochronology_of_basic_volcanic_rocks_within_the_Yingyangguan_Group_in_Hezhou_Guangxi_and_its_tectonic_implications?ev=auth_pub
      Zhou, J. B., Li, X. H., Ge, W. C., et al., 2007. Geochronology, Mantle Source and Geological Implications of Neoproterozoic Ultramafic Rocks from Yuanbaoshan Area of Northern Guangxi. Geological Science and Technology Information, 26(1): 11-18 (in Chinese with English abstract).
      Zhou, J. C., Wang, X. L., Qiu, J. S., 2009. Some Neoproterozoic Geological Events Involved in the Development of the Jiangnan Orogen. Geological Journal of China Universities, 15(4): 453-459 (in Chinese with English abstract).
      Zhou, J. C., Wang, X. L., Qiu, J. S., 2014. Neoproterozoic Tectonic-Magmatic Evolution of Jiangnan Orogenic Belt. Science Press, Beijing (in Chinese).
      Zhou, X. Y., Yu, J. H., Wang, L. J., et al., 2015. Compositions and Formation of the Basement Metamorphic Rocks in Yunkai Terrane, Western Guangdong Province, South China. Acta Petrologica Sinica, 31(3): 855-882 (in Chinese with English abstract).
      崔晓庄, 江新胜, 邓奇, 等, 2016. 桂北地区丹洲群锆石U-Pb年代学及对华南新元古代裂谷作用期次的启示. 大地构造与成矿学, 40(5): 1049-1063. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201605014.htm
      邓奇, 王剑, 汪正江, 等, 2016. 江南造山带新元古代中期(830~750 Ma)岩浆活动及对构造演化的制约. 大地构造与成矿学, 40(4): 753-771. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201604010.htm
      葛文春, 李献华, 李正祥, 等, 2001. 龙胜地区镁铁质侵入体: 年龄及其地质意义. 地质科学, 36(1): 112-118. https://www.cnki.com.cn/Article/CJFDTOTAL-GWYD202302007.htm
      寇彩化, 刘燕学, 李廷栋, 等, 2016. 江南造山带西段新元古代超基性岩体年代学和岩石地球化学研究及其对源区的约束. 岩石矿物学杂志, 35(6): 947-964. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201606003.htm
      寇彩化, 刘燕学, 李廷栋, 等, 2017a. 湘西通道地区新元古代长界橄榄辉石岩中单斜辉石矿物学特征及其板内裂谷成因论证. 地质论评, 63(4): 881-893. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201704004.htm
      寇彩化, 刘燕学, 李廷栋, 等, 2017b. 江南造山带西段桂北龙胜地区金车辉长岩矿物化学研究及其地质意义. 岩石矿物学杂志, 36(1): 20-35. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201701002.htm
      寇彩化, 张招崇, 廖宝丽, 等, 2011. 滇西剑川苦橄玢岩中单斜辉石的矿物学特征及其地质意义. 岩石矿物学杂志, 30(3): 449-462. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201103011.htm
      李江海, 穆剑, 1999. 我国境内格林威尔期造山带的存在及其对中元古代末期超大陆再造的制约. 地质科学, 34(3): 259-272. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX199903001.htm
      李献华, 王选策, 李武显, 等, 2008. 华南新元古代玄武质岩石成因与构造意义: 从造山运动到陆内裂谷. 地球化学, 37(4): 382-398. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200804011.htm
      梁文博, 郭瑞清, 刘桂萍, 等, 2019. 新疆库鲁克塔格西段橄榄辉长岩脉LA-ICP-MS锆石U-Pb年龄、地球化学特征及其构造意义. 地质科技通报, 38(1): 58-67. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201901007.htm
      覃小锋, 王宗起, 王涛, 等, 2015. 桂东鹰扬关群火山岩时代和构造环境的重新厘定: 对钦杭结合带西南段构造格局的制约. 地球学报, 36(3): 283-292. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201503003.htm
      秦亚, 冯佐海, 万磊, 等, 2022. 桂北龙胜上朗变镁铁质岩锆石U-Pb年龄及其地质意义. 吉林大学学报(地球科学版), 52(1): 109-133. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202201008.htm
      秦亚, 冯佐海, 黄靖哲, 等, 2021. 桂北地区三门韧性剪切带的厘定及其构造意义. 地球科学, 46(11): 4017-4032. doi: 10.3799/dqkx.2020.353?viewType=HTML
      邱家骧, 廖群安, 1996. 浙闽新生代玄武岩的岩石成因学与Cpx矿物化学. 火山地质与矿产, 17(S1): 16-25. https://www.cnki.com.cn/Article/CJFDTOTAL-HSDZ1996Z1001.htm
      孙传敏, 1994. 四川盐边元古代蛇绿岩中辉石的成因矿物学及其大地构造意义. 矿物岩石, 14(3): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS403.000.htm
      王剑, 江新胜, 卓皆文, 2019. 华南新元古代裂谷盆地演化与岩相古地理. 北京: 科学出版社.
      王剑, 刘宝珺, 潘桂棠, 2001. 华南新元古代裂谷盆地演化: Rodinia超大陆解体的前奏. 矿物岩石, 21(3): 135-145. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200103020.htm
      王令占, 田洋, 李响, 等, 2020. 桂东鹰扬关构造混杂岩物质组成及变形特征. 大地构造与成矿学, 44(3): 340-356. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202003002.htm
      王令占, 涂兵, 田洋, 等, 2019. 桂东鹰扬关地区1∶5万区域地质矿产调查成果与主要进展. 华南地质与矿产, 35(3): 283-292. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKC201903001.htm
      王鹏鸣, 于津海, 孙涛, 等, 2012. 湘东新元古代沉积岩的地球化学和碎屑锆石年代学特征及其构造意义. 岩石学报, 28(12): 3841-3857. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201212005.htm
      许效松, 刘伟, 门玉澎, 等, 2012. 对新元古代湘桂海盆及邻区构造属性的探讨. 地质学报, 86(12): 1890-1904. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201212004.htm
      尹福光, 万方, 陈明, 2003. 泛华夏大陆群东南缘多岛弧盆系统. 成都理工大学学报(自然科学版), 30(2): 126-131. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG200302002.htm
      殷鸿福, 吴顺宝, 杜远生, 等, 1999. 华南是特提斯多岛洋体系的一部分. 地球科学, 24(1): 1-12. http://www.earth-science.net/article/id/749
      张成龙, 秦亚, 冯佐海, 等, 2020. 桂北龙胜吊竹山辉绿岩年代学及其地质意义. 桂林理工大学学报, 40(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX202001001.htm
      张国伟, 郭安林, 王岳军, 等, 2013. 中国华南大陆构造与问题. 中国科学(D辑), 43(10): 1553-1582. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201310003.htm
      周汉文, 李献华, 王汉荣, 等, 2002. 广西鹰扬关群基性火山岩的锆石U-Pb年龄及其地质意义. 地质论评, 48(S1): 22-25. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2002S1005.htm
      周继彬, 李献华, 葛文春, 等, 2007. 桂北元宝山地区超镁铁岩的年代、源区及其地质意义. 地质科技情报, 26(1): 11-18. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200701001.htm
      周金城, 王孝磊, 邱检生, 2009. 江南造山带形成过程中若干新元古代地质事件. 高校地质学报, 15(4): 453-459. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200904003.htm
      周金城, 王孝磊, 邱检生, 2014. 江南造山带新元古代构造-岩浆演化. 北京: 科学出版社.
      周雪瑶, 于津海, 王丽娟, 等, 2015. 粤西云开地区基底变质岩的组成和形成. 岩石学报, 31(3): 855-882 https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201503018.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(4)

      Article views (771) PDF downloads(83) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return