Citation: | Zhao Yuxi, Sun Qunqun, Tong Man, Yuan Songhu, 2023. Response and Mechanism of Iron-Reducing Bacterium Shewanella oneidensis MR-1 to Perturbance of H2O2. Earth Science, 48(4): 1649-1656. doi: 10.3799/dqkx.2022.115 |
Bendouz, M., Tran, L. H., Coudert, L., et al., 2017. Degradation of Polycyclic Aromatic Hydrocarbons in Different Synthetic Solutions by Fenton's Oxidation. Environmental Technology, 38(1): 116-127. https://doi. org/10.1080/09593330.2016.1188161 doi: 10.1080/09593330.2016.1188161
|
Borch, T., Kretzschmar, R., Kappler, A., et al., 2010. Biogeochemical Redox Processes and Their Impact on Contaminant Dynamics. Environmental Science & Technology, 44(1): 15-23. https://doi. org/10.1021/es9026248 doi: 10.1021/es9026248
|
Brandi, G., Cattabeni, F., Albano, A., et al., 1989. Role of Hydroxyl Radicals in escherichia-coli Killing Induced by Hydrogen-Peroxide. Free Radical Research Communications, 6(1): 47-55. https://doi. org/10.3109/10715768909073427 doi: 10.3109/10715768909073427
|
Chen, R., Liu, H., Tong, M., et al., 2018. Impact of Fe(Ⅱ) Oxidation in the Presence of Iron-Reducing Bacteria on Subsequent Fe(Ⅲ) Bioreduction. Science of the Total Environment, 639: 1007-1014. https://doi. org/10.1016/j.scitotenv.2018.05.241 doi: 10.1016/j.scitotenv.2018.05.241
|
Du, Y. C., Dou, J. F., Ding, A. Z., et al., 2011. Study on Characteristics and Influencing Factors of PAHs Degradation in Soil by Fenton-Like Reagent. Chinese Journal of Environmental Engineering, 5(8): 1882-1886 (in Chinese with English abstract).
|
Esther, J., Sukla, L. B., Pradhan, N., et al., 2015. Fe (Ⅲ) Reduction Strategies of Dissimilatory Iron Reducing Bacteria. Korean Journal of Chemical Engineering, 32(1): 1-14. https://doi. org/10.1007/s11814-014-0286-x doi: 10.1007/s11814-014-0286-x
|
Hu, M., Li, F. B., 2014. Soil Microbe Mediated Iron Cycling and Its Environmental Implication. Acta Pedologica Sinica, 51(4): 683-698 (in Chinese with English abstract).
|
Kumar, A. R., Riyazuddin, P., 2012. Seasonal Variation of Redox Species and Redox Potentials in Shallow Groundwater: A Comparison of Measured and Calculated Redox Potentials. Journal of Hydrology, 444: 187-198. https://doi. org/10.1016/j.jhdrol.2012.04.018 doi: 10.1016/j.jhdrol.2012.04.018
|
Li, Y. C., Yu, S., Strong, J., et al., 2012. Are the Biogeochemical Cycles of Carbon, Nitrogen, Sulfur, and Phosphorus Driven by the "Fe-Ⅲ-Fe-Ⅱ Redox Wheel" in Dynamic Redox Environments? Journal of Soils and Sediments, 12(5): 683-693. https://doi. org/10.1007/s11368-012-0507-z doi: 10.1007/s11368-012-0507-z
|
Ma, C., Zhou, S., Zhuang, L., Wu, C., 2011. Electron Transfer Mechanism of Extracellular Respiration: A Review. Acta Ecologica Sinica, 31: 2008-2018.
|
Mao, H., Qu, D., Zhou, L. N., 2005. Effect of Variant Chromate and Ferrihydrite on Dissimilatory Fe (Ⅲ) Reduction in Paddy Soil. Chinese Agricultural Science Bulletin, 21(6): 235-237 (in Chinese with English abstract).
|
Melton, E. D., Swanner, E. D., Behrens, S., et al., 2014. The Interplay of Microbially Mediated and Abiotic Reactions in the Biogeochemical Fe Cycle. Nature Reviews Microbiology, 12(12): 797-808. https://doi. org/10.1038/nrmicro3347 doi: 10.1038/nrmicro3347
|
Pan, Y. L., 2014. The Oxidative Degradation of Polycyclic Aromatic Hydrocarbons in Water and Soil by Fenton's Reagent (Dissertation). Nanjing Agricultural University, Nanjing (in Chinese with English abstract).
|
Pitts, K. E., Dobbin, P. S., Reyes-Ramirez, F., et al., 2003. Characterization of the Shewanella Oneidensis MR-1 Decaheme Cytochrome MtrA. Journal of Biological Chemistry, 278(30): 27758-27765. https://doi. org/10.1074/jbc.M302582200 doi: 10.1074/jbc.M302582200
|
Qu, J. Y., Tong, M., Yuan, S. H., 2021. Effect and Mechanism of Fe(Ⅱ) Oxygenation on Activities of Iron and Manganese Cycling Functional Microbes. Earth Science, 46(2): 632-641 (in Chinese with English abstract).
|
Schuetz, B., Schicklberger, M., Kuermann, J., et al., 2009. Periplasmic Electron Transfer via the c-Type Cytochromes MtrA and FccA of Shewanellaoneidensis MR-1. Applied and Environmental Microbiology, 75(24): 7789-7796. https://doi. org/10.1128/aem.01834-09 doi: 10.1128/aem.01834-09
|
Vermilyea, A. W., Hansard, S. P., Voelker, B. M., 2010. Dark Production of Hydrogen Peroxide in the Gulf of Alaska. Limnology and Oceanography, 55(2): 580-588. https://doi. org/10.4319/lo.2009.55.2.0580 doi: 10.4319/lo.2009.55.2.0580
|
Wong, A. Y. L., Wong, G. T. F., 2001. The Effect of Spectral Composition on the Photochemical Production of Hydrogen Peroxide in Lake Water. Terrestrial Atmospheric and Oceanic Sciences, 12(4): 695-704. https://doi. org/10.3319/tao.2001.12.4.695(o) doi: 10.3319/tao.2001.12.4.695(o
|
Yuan, X., Nico, P. S., Huang, X., et al., 2017. Production of Hydrogen Peroxide in Groundwater at Rifle, Colorado. Environmental Science & Technology, 51(14): 7881-7891. https://doi. org/10.1021/acs.est.6b04803 doi: 10.1021/acs.est.6b04803
|
Zhang, N., 2021. Distribution and Production Mechanisms of Hydrogen Peroxide in Riparian Unconfined Aquifers (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
|
Zhang, T., Hansel, C. M., Voelker, B. M., et al., 2016. Extensive Dark Biological Production of Reactive Oxygen Species in Brackish and Freshwater Ponds. Environmental Science & Technology, 50(6): 2983-2993. https://doi. org/10.1021/acs.est.5b03906 doi: 10.1021/acs.est.5b03906
|
Zhang, Y., Tong, M., Yuan, S., et al., 2020. Interplay between Iron Species Transformation and Hydroxyl Radicals Production in Soils and Sediments during Anoxic-Oxic Cycles. Geoderma, 370. https://doi. org/10.1016/j.geoderma.2020.114351 doi: 10.1016/j.geoderma.2020.114351
|
Zhao, S. F., Liu, H., Zhao, L., et al., 2021. Responses of Different Iron and Nitrogen Transformation Functional Microorganisms to Fe(Ⅱ) Chemical Oxidation. Earth Science, (4): 1481-1489 (in Chinese with English abstract).
|
Zhou, G., Yin, J., Chen, H., et al., 2013. Combined Effect of Loss of the caa3 Oxidase and Crp Regulation Drives Shewanella to Thrive in Redox-Stratified Environments. ISME Journal, 7(9): 1752-1763. https://doi. org/10.1038/ismej.2013.62 doi: 10.1038/ismej.2013.62
|
杜勇超, 豆俊峰, 丁爱中, 等, 2011. 类Fenton试剂氧化降解土壤中PAHs及其影响因素研究. 环境工程学报, 5(8): 1882-1886. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201108039.htm
|
胡敏, 李芳柏, 2014. 土壤微生物铁循环及其环境意义. 土壤学报, 51(4): 683-698. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201404002.htm
|
毛晖, 曲东, 周莉娜, 2005. 稻田土壤中添加不同浓度铬对异化铁还原和铬还原的影响. 中国农学通报, 21(6): 235-237. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB200506069.htm
|
潘玉兰, 2014. Fenton试剂氧化降解水和土壤中多环芳烃(硕士学位论文). 南京: 南京农业大学.
|
屈婧祎, 童曼, 袁松虎, 2021. 二价铁氧化对铁锰循环功能微生物活性的影响及机制. 地球科学, 46(2): 632-641. doi: 10.3799/dqkx.2020.029
|
张娜, 2021. 河岸带潜水含水层过氧化氢的分布规律和产生机制(博士学位论文). 武汉: 中国地质大学.
|
赵淑凤, 刘慧, 赵磊, 等, 2021. 不同铁、氮转化功能微生物对Fe(Ⅱ)化学氧化的响应. 地球科学, 46(4): 1481-1489. doi: 10.3799/dqkx.2020.131
|