• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 11
    Nov.  2022
    Turn off MathJax
    Article Contents
    Rao Song, Yang Yinan, Hu Shengbiao, Wang Qiang, 2022. Thermal Evolution History and Shale Gas Accumulation Significance of Lower Cambrian Qiongzhusi Formation in Southwest Sichuan Basin. Earth Science, 47(11): 4319-4335. doi: 10.3799/dqkx.2022.153
    Citation: Rao Song, Yang Yinan, Hu Shengbiao, Wang Qiang, 2022. Thermal Evolution History and Shale Gas Accumulation Significance of Lower Cambrian Qiongzhusi Formation in Southwest Sichuan Basin. Earth Science, 47(11): 4319-4335. doi: 10.3799/dqkx.2022.153

    Thermal Evolution History and Shale Gas Accumulation Significance of Lower Cambrian Qiongzhusi Formation in Southwest Sichuan Basin

    doi: 10.3799/dqkx.2022.153
    • Received Date: 2022-02-17
      Available Online: 2022-12-07
    • Publish Date: 2022-11-25
    • The thermal evolution history is closely related to shale gas generation and accumulation process. On the one hand, the maturity evolution history determines the hydrocarbon generation process, type and amount of shale gas in the geological history. On the other hand, the formation of organic matter hosted pore is extremely relevant to the thermal evolution history of gas shale. In this paper, through analysis of burial and thermal history, it examined representative boreholes for the thermal evolution simulation of the Qiongzhusi Formation shale in the Southwest Sichuan basin, where the zircon (U-Th)/He and bitumen reflectance (Rb) were used for calibration. Then, the relationship between the thermal evolution history and the shale gas generation and accumulation was discussed. The results show that they differed from borehole to borehole on the thermal evolution and hydrocarbon generation history of Qiongzhusi Formation shale in the Southwest Sichuan basin and two patterns were summarized. The Qiongzhusi Formation shale in the Caledonian depression entered the mature stage during Caledonian period and typing stage during the Middle-Late Permian because of Emeishan mantle plume. Accordingly, the two hydrocarbon generation peaks occurred in the Silurian (oil and wet gas generation stage) and the Middle-Late Permian (dry gas generation stage), respectively, which indicates that the organic matter had been nearly exhausted during the Middle-Late Permian and there was no obvious hydrocarbon generating activities since then. The Qiongzhusi Formation shale in the Caledonian uplift area was very different from the former on the thermal evolution and hydrocarbon generation history. They had not yet or just exceeded the generation threshold during the Caledonian, and continually entered the mature and overmature stage during the late Hercynian to Yanshanian. There were also two rapid hydrocarbon generation stages of the Qiongzhusi Formation shale in the Caledonian uplift area, namely during the Middle-Late Permian (oil generation stage) and the Late Jurassic to Late Cretaceous (wet and dry gas generation stage). With the basin uplift and cooling, the hydrocarbon generation was effectively halted at the end of the Late Cretaceous. It shows that the different burial depths of Qiongzhusi Formation shale during the Middle-Late Permian caused dominantly the different influence by high heat flow associated with Emeishan mantle plume, and eventually led to the differences on the thermal evolution, hydrocarbon generation history and gas-bearing characteristics of Qiongzhusi Formation shale between the Caledonian depression and uplift area. The Qiongzhusi Formation shale gas accumulation process in Weiyuan-Qianwei area was divided into four phases on the basis of hydrocarbon generating and porosity evolution history analysis: the source-reservoir-cap deposition and biogenic gas accumulation stage during Early Paleozoic, the initial accumulation stage during the Middle-Late Permian, the main accumulation stage from the Late Jurassic to Early Cretaceous, and the adjustment stage since the Late Cretaceous. The thermal evolution analysis explains the Qiongzhusi Formation shale gas accumulation differences between the Weiyuan-Qianwei and periphery in the Southwest Sichuan basin.

       

    • loading
    • Cander, H., 2012. Sweet Spots in Shale Gas and Liquids Plays: Prediction of Fluid Composition and Reservoir Pressure. Search & Discovery Article, 40936.
      Chen, G. H., Lu, S. F., Liu, K. Y., et al., 2020. Occurrence State and Micro Mechanisms of Shale Gas on Pore Walls. Earth Science, 45(5): 1782-1790 (in Chinese with English abstract).
      Chen, S. B., Zhu, Y. M., Chen, S., et al., 2017. Hydrocarbon Generation and Shale Gas Accumulation in the Longmaxi Formation, Southern Sichuan Basin, China. Marine & Petroleum Geology, 86: 248-258.
      Cheng, K. M., Wang, S. Q., Dong, D. Z., et al., 2009. Accumulation Conditions of Shale Gas Reservoirs in the Lower Cambrian Qiongzhusi Formation, the Upper Yangtze Region. Natural Gas Industry, 29(5): 40-44, 136 (in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2009.05.008
      Curtis, M. E., Cardott, B. J., Sondergeld, C. H., et al., 2012. Development of Organic Porosity in the Woodford Shale with Increasing Thermal Maturity. International Journal of Coal Geology, 103(23): 26-31.
      He, L. J., 2014. Permian to Late Triassic Evolution of the Longmenshan Foreland Basin (Western Sichuan): Model Results from Both the Lithospheric Extension and Flexure. Journal of Asian Earth Sciences, 93(93): 49-59.
      He, L. J., Huang, F., Liu, Q. Y., et al., 2014. Tectono⁃Thermal Evolution of Sichuan Basin in Early Paleozoic. Journal of Earth Sciences and Environment, 36(2): 10-17 (in Chinese with English abstract).
      He, L. J., Xu, H. H., Wang, J. Y., 2011. Thermal Evolution and Dynamic Mechanism of the Sichuan Basin during the Early Permian⁃Middle Triassic. Science China Earth Sciences, 54(12): 1948-1954. https://doi.org/10.1007/s11430⁃011⁃4240⁃z
      Huang, F., Liu, Q. Y., He, L. J., 2012. Tectono⁃Thermal Modeling of the Sichuan Basin since the Late Himalayan Period. Chinese Journal of Geophysics, 55(11): 3742-3753 (in Chinese with English abstract). doi: 10.6038/j.issn.0001-5733.2012.11.021
      Huang, J. L., Zou, C. N., Li, J. Z., et al., 2012. Shale Gas Generation and Potential of the Lower Cambrian Qiongzhusi Formation in Southern Sichuan Basin, China. Petroleum Exploration and Development, 39(1): 69-75 (in Chinese with English abstract).
      Jarvie, D. M., Hill, R. J., Ruble, T. E., et al., 2007. Unconventional Shale Gas Systems: The Mississippian Barnett Shale of North⁃Central Texas as One Model for Thermogenic Shale⁃Gas Assessment. AAPG Bulletin, 91(4): 475-799. doi: 10.1306/12190606068
      Jiang, G. Z., Gao, P., Rao, S., et al., 2016. Compilation of Heat Flow Data in the Continental Area of China (4th Edition). Chinese Journal of Geophysics, 59(8): 2892-2910 (in Chinese with English abstract).
      Jiang, Q., Qiu, N. S., Zhu, C. Q., 2018. Heat Flow Study of the Emeishan Large Igneous Province Region: Implications for the Geodynamics of the Emeishan Mantle Plume. Tectonophysics, 724(31): 11-27.
      Jiang, Q., Zhu, C. Q., Qiu, N. S., et al., 2015. Paleo⁃Heat Flow and Thermal Evolution of the Lower Cambrian Qiongzhusi Shale in the Southern Sichuan Basin, SW China. Natural Gas Geoscience, 26(8): 1563-1570 (in Chinese with English abstract).
      Klaver, J., Desbois, G., Littke, R., et al., 2016. BIB⁃SEM Pore Characterization of Mature and Post Mature Posidonia Shale Samples from the Hils Area, Germany. International Journal of Coal Geology, 158(15): 78-89.
      Li, Y. J., Zhao, S. X., Huang, Y. B., et al., 2013. The Sedimentary Micro⁃Facies Study of the Lower Cambrian Qiongzhusi Formation in Southern Sichuan Basin. Acta Geologica Sinica, 87(8): 1136-1148 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2013.08.008
      Liu, B., 2022. Organic Matter in Shales: Types, Thermal Evolution, and Organic Pores. Earth Science, in Press (in Chinese with English abstract).
      Liu, S. G., Deng, B., Zhong, Y., et al., 2016. Unique Geological Features of Burial and Superimposition of the Lower Paleozoic Shale Gas across the Sichuan Basin and Its Periphery. Earth Science Frontiers, 23(1): 11-28 (in Chinese with English abstract).
      Liu, W. P., Zhang, C. L., Gao, G. D., et al., 2017. Controlling Factors and Evolution Laws of Shale Porosity in Longmaxi Formation, Sichuan Basin. Acta Petrolei Sinica, 38(2): 175-184 (in Chinese with English abstract).
      Mastalerz, M., Schimmelmann, A., Drobniak, A., et al., 2013. Porosity of Devonian and Mississippian New Albany Shale across a Maturation Gradient: Insights from Organic Petrology, Gas Adsorption, and Mercury Intrusion. AAPG Bulletin, 97(10): 1621-1643.
      Nie, H. K., Zhang, J. C., Li, Y. X., 2011. Accumulation Conditions of the Lower Cambrian Shale Gas in the Sichuan Basin and Its Periphery. Acta Petrolei Sinica, 32(6): 959-967 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-8719.2011.06.020
      Pommer, M., Milliken, K., 2015. Pore Types and Pore⁃Size Distributions across Thermal Maturity, Eagle Ford Formation, Southern Texas. AAPG Bulletin, 99(9): 1713-1744. doi: 10.1306/03051514151
      Rao, S., Hu, D., Hu, S. B., et al., 2019. Tectono⁃ Thermal Reconstruction Methods for Deep Zone in Superimposed Basins: A Case Study from Sichuan Basin. Chinese Journal of Geology, 54(1): 159-175 (in Chinese with English abstract).
      Rao, S., Tang, X. Y., Zhu, C. Q., et al., 2011. The Application of Sensitivity Analysis in the Source Rock Maturity History Simulation: An Example from Palaeozoic Marine Source Rock of Puguang⁃5 Well in the Northeast of Sichuan Basin. Chinese Journal of Geology (Scientia Geologica Sinica), 46(1): 213-225 (in Chinese with English abstract).
      Rao, S., Zhu, C. Q., Wang, Q., et al., 2013. Thermal Evolution Patterns of the Sinian⁃Lower Paleozoic Source Rocks in the Sichuan Basin, Southwest China. Chinese Journal of Geophysics, 56(5): 1549-1559 (in Chinese with English abstract).
      Valentine, B. J., Hackley, P. C., Enomoto, C. B., et al., 2014. Organic Petrology of the Aptian⁃Age Section in the Downdip Mississippi Interior Salt Basin, Mississippi, USA: Observations and Preliminary Implications for Thermal Maturation History. International Journal of Coal Geology, 136: 38-51. doi: 10.1016/j.coal.2014.10.008
      Wang, Y. M., Dong, D. Z., Cheng, X. Z., et al., 2014. Electric Property Evidences of the Carbonification of Organic Matters in Marine Shales and Its Geologic Significance: A Case of the Lower Cambrian Qiongzhusi Shale in Southern Sichuan Basin. Natural Gas Industry, 34(8): 1-7 (in Chinese with English abstract).
      Xiao, Q. L., Liu, A., Li, C. X., et al., 2020. Formation and Evolution of Nanopores in Highly Matured Shales at Over⁃Mature Stage: Insights from the Hydrous Pyrolysis Experiments on Cambrain Shuijintuo Shale from the Middle Yangtze Region. Earth Science, 45(6): 2160-2171 (in Chinese with English abstract).
      Xiao, X. M., Wang, M. L., Wei, Q., et al., 2015. Evaluation of Lower Paleozoic Shale with Shale Gas Prospect in South China. Natural Gas Geoscience, 26(8): 1433-1445 (in Chinese with English abstract).
      Xu, M., Zhu, C. Q., Tian, Y. T., et al., 2011. Borehole Temperature Logging and Characteristics of Subsurface Temperature in the Sichuan Basin. Chinese Journal of Geophysics, 54(4): 1052-1060 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5733.2011.04.020
      Xu, X. M., Sun, W. L., Wang, S. Q., et al., 2019. Maturity Evaluation of Marine Shale in the Lower Paleozoic in South China. Earth Science, 44(11): 3717-3724 (in Chinese with English abstract).
      Yan, J. F., Men, Y. P., Sun, Y. Y., et al., 2015. Geochemical and Geological Characteristics of the Lower Cambrian Shales in the Middle⁃Upper Yangtze Area of South China and Their Implication for the Shale Gas Exploration. Marine & Petroleum Geology, 70: 1-13.
      Yan, J. H., Li, Q. G., Zhu, X., 2016. Main Factors Controlling Shale Gas Accumulation and Exploration Targets in the Lower Cambrian, Sichuan Basin and Its Periphery. Petroleum Geology & Experiment, 38(4): 445-452 (in Chinese with English abstract).
      Yang, W., He, S., Zhai, G. Y., et al. 2021. Maturity Assessment of the Lower Cambrian and Sinian Shales Using Multiple Technical Approaches. Journal of Earth Science, 32(5): 1262-1277. doi: 10.1007/s12583-020-1329-3
      Zhang, L., Xiong, Y. Q., Chen, Y., et al., 2017. Mechanisms of Shale Gas Generation from Typically Organic⁃Rich Marine Shales. Earth Science, 42(7): 1092-1106 (in Chinese with English abstract).
      Zhang, T. S., Yang, Y., Gong, Q. S., et al., 2014. Characteristics and Mechanisms of the Micro⁃Pores in the Early Palaeozoic Marine Shale, Southern Sichuan Basin. Acta Geologica Sinica, 88(9): 1728-1740 (in Chinese with English abstract).
      Zhao, W. Z., Li, J. Z., Yang, T., et al., 2016. Geological Difference and Its Significance of Marine Shale Gases in South China. Petroleum Exploration and Development, 43(4): 499-510 (in Chinese with English abstract). doi: 10.11698/PED.2016.04.01
      Zhao, W. Z., Wang, Z. Y., Wang, H. J., et al., 2011. Further Discussion on the Connotation and Significance of the Natural Gas Relaying Generation Model from Organic Materials. Petroleum Exploration and Development, 38(2): 129-135 (in Chinese with English abstract). doi: 10.1016/S1876-3804(11)60021-9
      Zhu, C. Q., Hu, S. B., Qiu, N. S., et al., 2018. Geothermal Constraints on Emeishan Mantle Plume Magmatism: Paleotemperature Reconstruction of the Sichuan Basin, SW China. International Journal of Earth Sciences, 107(1): 71-88. https://doi.org/10.1007/s00531⁃016⁃1404⁃2
      Zhu, C. Q., Tian, Y. T., Xu, M., et al., 2010. The Effect of Emeishan Supper Mantle Plume to the Thermal Evolution of Source Rocks in the Sichuan Basin. Chinese Journal of Geophysics, 53(1): 119-127 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5733.2010.01.013
      Zhu, C. Q., Xu, M., Shan, J. N., et al., 2009. Quantifying the Denudations of Major Tectonic Events in Sichuan Basin: Constrained by the Paleothermal Records. Geology in China, 36(6): 1268-1277 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2009.06.008
      陈国辉, 卢双舫, 刘可禹, 等, 2020. 页岩气在孔隙表面的赋存状态及其微观作用机理. 地球科学, 45(5): 1782-1790. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202005021.htm
      程克明, 王世谦, 董大忠, 等, 2009. 上扬子区下寒武统筇竹寺组页岩气成藏条件. 天然气工业, 29(5): 40-44, 136. doi: 10.3787/j.issn.1000-0976.2009.05.008
      何丽娟, 黄方, 刘琼颖, 等, 2014. 四川盆地早古生代构造‒热演化特征. 地球科学与环境学报, 36(2): 10-17. doi: 10.3969/j.issn.1672-6561.2014.02.004
      黄方, 刘琼颖, 何丽娟, 2012. 晚喜山期以来四川盆地构造‒热演化模拟. 地球物理学报, 55(11): 3742-3753. doi: 10.6038/j.issn.0001-5733.2012.11.021
      黄金亮, 邹才能, 李建忠, 等, 2012. 川南下寒武统筇竹寺组页岩气形成条件及资源潜力. 石油勘探与开发, 39(1): 69-75. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201201009.htm
      姜光政, 高堋, 饶松, 等, 2016. 中国大陆地区大地热流数据汇编(第四版). 地球物理学报, 59(8): 2892-2910. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201608015.htm
      江强, 朱传庆, 邱楠生, 等, 2015. 川南地区热史及下寒武统筇竹寺组页岩热演化特征. 天然气地球科学, 26(8): 1563-1570. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201508018.htm
      李延钧, 赵圣贤, 黄勇斌, 等, 2013. 四川盆地南部下寒武统筇竹寺组页岩沉积微相研究. 地质学报, 87(8): 1136-1148. doi: 10.3969/j.issn.0001-5717.2013.08.008
      刘贝, 2022. 泥页岩中有机质: 类型、热演化与有机孔隙. 地球科学, 待刊.
      刘树根, 邓宾, 钟勇, 等, 2016. 四川盆地及周缘下古生界页岩气深埋藏‒强改造独特地质作用. 地学前缘, 23(1): 11-28. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201601004.htm
      刘文平, 张成林, 高贵冬, 等, 2017. 四川盆地龙马溪组页岩孔隙度控制因素及演化规律. 石油学报, 38(2): 175-184. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201702005.htm
      聂海宽, 张金川, 李玉喜, 2011. 四川盆地及其周缘下寒武统页岩气聚集条件. 石油学报, 32(6): 959-967. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201106006.htm
      饶松, 胡迪, 胡圣标, 等, 2019. 叠合盆地深层构造‒热演化研究方法: 以四川盆地为例. 地质科学, 54(1): 159-175. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX202103013.htm
      饶松, 唐晓音, 朱传庆, 等, 2011. 敏感性分析在烃源岩成熟度史模拟中的应用: 以川东北地区普光5井古生界海相烃源岩为例. 地质科学, 46(1): 213-225. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201101018.htm
      饶松, 朱传庆, 王强, 等, 2013. 四川盆地震旦系‒下古生界烃源岩热演化模式及主控因素. 地球物理学报, 56(5): 1549-1559. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201305014.htm
      王玉满, 董大忠, 程相志, 等, 2014. 海相页岩有机质炭化的电性证据及其地质意义——以四川盆地南部地区下寒武统筇竹寺组页岩为例. 天然气工业, 34(8): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201408002.htm
      肖七林, 刘安, 李楚雄, 等, 2020. 高演化页岩纳米孔隙在过熟阶段的形成演化特征及主控因素: 中扬子地区寒武系水井沱组页岩含水热模拟实验. 地球科学, 45(6): 2160-2171. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202006027.htm
      肖贤明, 王茂林, 魏强, 等, 2015. 中国南方下古生界页岩气远景区评价. 天然气地球科学, 26(8): 1433-1445. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201508002.htm
      徐明, 朱传庆, 田云涛, 等, 2011. 四川盆地钻孔温度测量及现今地热特征. 地球物理学报, 54(4): 1052-1060. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201104022.htm
      徐学敏, 孙玮琳, 汪双清, 等, 2019. 南方下古生界海相页岩有机质成熟度评价. 地球科学, 44(11): 3717-3724. doi: 10.3799/dqkx.2019.181
      燕继红, 李启桂, 朱祥, 2016. 四川盆地及周缘下寒武统页岩气成藏主控因素与勘探方向. 石油实验地质, 38(4): 445-452. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201604005.htm
      张莉, 熊永强, 陈媛, 等, 2017. 中国典型海相富有机质页岩的生气机理. 地球科学, 42(7): 1092-1106. doi: 10.3799/dqkx.2017.088
      张廷山, 杨洋, 龚其森, 等, 2014. 四川盆地南部早古生代海相页岩微观孔隙特征及发育控制因素. 地质学报, 88(9): 1728-1740. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201409009.htm
      赵文智, 李建忠, 杨涛, 等, 2016. 中国南方海相页岩气成藏差异性比较与意义. 石油勘探与开发, 43(4): 499-510. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201604002.htm
      赵文智, 王兆云, 王红军, 等, 2011. 再论有机质"接力成气"的内涵与意义. 石油勘探与开发, 38(2): 129-135. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201102003.htm
      朱传庆, 田云涛, 徐明, 等, 2010. 峨眉山超级地幔柱对四川盆地烃源岩热演化的影响. 地球物理学报, 53(1): 119-127. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201001014.htm
      朱传庆, 徐明, 单竞男, 等, 2009. 利用古温标恢复四川盆地主要构造运动时期的剥蚀量. 中国地质, 36(6): 1268-1277. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200906010.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)  / Tables(3)

      Article views (1888) PDF downloads(153) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return