Citation: | Rao Song, Yang Yinan, Hu Shengbiao, Wang Qiang, 2022. Thermal Evolution History and Shale Gas Accumulation Significance of Lower Cambrian Qiongzhusi Formation in Southwest Sichuan Basin. Earth Science, 47(11): 4319-4335. doi: 10.3799/dqkx.2022.153 |
Cander, H., 2012. Sweet Spots in Shale Gas and Liquids Plays: Prediction of Fluid Composition and Reservoir Pressure. Search & Discovery Article, 40936.
|
Chen, G. H., Lu, S. F., Liu, K. Y., et al., 2020. Occurrence State and Micro Mechanisms of Shale Gas on Pore Walls. Earth Science, 45(5): 1782-1790 (in Chinese with English abstract).
|
Chen, S. B., Zhu, Y. M., Chen, S., et al., 2017. Hydrocarbon Generation and Shale Gas Accumulation in the Longmaxi Formation, Southern Sichuan Basin, China. Marine & Petroleum Geology, 86: 248-258.
|
Cheng, K. M., Wang, S. Q., Dong, D. Z., et al., 2009. Accumulation Conditions of Shale Gas Reservoirs in the Lower Cambrian Qiongzhusi Formation, the Upper Yangtze Region. Natural Gas Industry, 29(5): 40-44, 136 (in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2009.05.008
|
Curtis, M. E., Cardott, B. J., Sondergeld, C. H., et al., 2012. Development of Organic Porosity in the Woodford Shale with Increasing Thermal Maturity. International Journal of Coal Geology, 103(23): 26-31.
|
He, L. J., 2014. Permian to Late Triassic Evolution of the Longmenshan Foreland Basin (Western Sichuan): Model Results from Both the Lithospheric Extension and Flexure. Journal of Asian Earth Sciences, 93(93): 49-59.
|
He, L. J., Huang, F., Liu, Q. Y., et al., 2014. Tectono⁃Thermal Evolution of Sichuan Basin in Early Paleozoic. Journal of Earth Sciences and Environment, 36(2): 10-17 (in Chinese with English abstract).
|
He, L. J., Xu, H. H., Wang, J. Y., 2011. Thermal Evolution and Dynamic Mechanism of the Sichuan Basin during the Early Permian⁃Middle Triassic. Science China Earth Sciences, 54(12): 1948-1954. https://doi.org/10.1007/s11430⁃011⁃4240⁃z
|
Huang, F., Liu, Q. Y., He, L. J., 2012. Tectono⁃Thermal Modeling of the Sichuan Basin since the Late Himalayan Period. Chinese Journal of Geophysics, 55(11): 3742-3753 (in Chinese with English abstract). doi: 10.6038/j.issn.0001-5733.2012.11.021
|
Huang, J. L., Zou, C. N., Li, J. Z., et al., 2012. Shale Gas Generation and Potential of the Lower Cambrian Qiongzhusi Formation in Southern Sichuan Basin, China. Petroleum Exploration and Development, 39(1): 69-75 (in Chinese with English abstract).
|
Jarvie, D. M., Hill, R. J., Ruble, T. E., et al., 2007. Unconventional Shale Gas Systems: The Mississippian Barnett Shale of North⁃Central Texas as One Model for Thermogenic Shale⁃Gas Assessment. AAPG Bulletin, 91(4): 475-799. doi: 10.1306/12190606068
|
Jiang, G. Z., Gao, P., Rao, S., et al., 2016. Compilation of Heat Flow Data in the Continental Area of China (4th Edition). Chinese Journal of Geophysics, 59(8): 2892-2910 (in Chinese with English abstract).
|
Jiang, Q., Qiu, N. S., Zhu, C. Q., 2018. Heat Flow Study of the Emeishan Large Igneous Province Region: Implications for the Geodynamics of the Emeishan Mantle Plume. Tectonophysics, 724(31): 11-27.
|
Jiang, Q., Zhu, C. Q., Qiu, N. S., et al., 2015. Paleo⁃Heat Flow and Thermal Evolution of the Lower Cambrian Qiongzhusi Shale in the Southern Sichuan Basin, SW China. Natural Gas Geoscience, 26(8): 1563-1570 (in Chinese with English abstract).
|
Klaver, J., Desbois, G., Littke, R., et al., 2016. BIB⁃SEM Pore Characterization of Mature and Post Mature Posidonia Shale Samples from the Hils Area, Germany. International Journal of Coal Geology, 158(15): 78-89.
|
Li, Y. J., Zhao, S. X., Huang, Y. B., et al., 2013. The Sedimentary Micro⁃Facies Study of the Lower Cambrian Qiongzhusi Formation in Southern Sichuan Basin. Acta Geologica Sinica, 87(8): 1136-1148 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2013.08.008
|
Liu, B., 2022. Organic Matter in Shales: Types, Thermal Evolution, and Organic Pores. Earth Science, in Press (in Chinese with English abstract).
|
Liu, S. G., Deng, B., Zhong, Y., et al., 2016. Unique Geological Features of Burial and Superimposition of the Lower Paleozoic Shale Gas across the Sichuan Basin and Its Periphery. Earth Science Frontiers, 23(1): 11-28 (in Chinese with English abstract).
|
Liu, W. P., Zhang, C. L., Gao, G. D., et al., 2017. Controlling Factors and Evolution Laws of Shale Porosity in Longmaxi Formation, Sichuan Basin. Acta Petrolei Sinica, 38(2): 175-184 (in Chinese with English abstract).
|
Mastalerz, M., Schimmelmann, A., Drobniak, A., et al., 2013. Porosity of Devonian and Mississippian New Albany Shale across a Maturation Gradient: Insights from Organic Petrology, Gas Adsorption, and Mercury Intrusion. AAPG Bulletin, 97(10): 1621-1643.
|
Nie, H. K., Zhang, J. C., Li, Y. X., 2011. Accumulation Conditions of the Lower Cambrian Shale Gas in the Sichuan Basin and Its Periphery. Acta Petrolei Sinica, 32(6): 959-967 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-8719.2011.06.020
|
Pommer, M., Milliken, K., 2015. Pore Types and Pore⁃Size Distributions across Thermal Maturity, Eagle Ford Formation, Southern Texas. AAPG Bulletin, 99(9): 1713-1744. doi: 10.1306/03051514151
|
Rao, S., Hu, D., Hu, S. B., et al., 2019. Tectono⁃ Thermal Reconstruction Methods for Deep Zone in Superimposed Basins: A Case Study from Sichuan Basin. Chinese Journal of Geology, 54(1): 159-175 (in Chinese with English abstract).
|
Rao, S., Tang, X. Y., Zhu, C. Q., et al., 2011. The Application of Sensitivity Analysis in the Source Rock Maturity History Simulation: An Example from Palaeozoic Marine Source Rock of Puguang⁃5 Well in the Northeast of Sichuan Basin. Chinese Journal of Geology (Scientia Geologica Sinica), 46(1): 213-225 (in Chinese with English abstract).
|
Rao, S., Zhu, C. Q., Wang, Q., et al., 2013. Thermal Evolution Patterns of the Sinian⁃Lower Paleozoic Source Rocks in the Sichuan Basin, Southwest China. Chinese Journal of Geophysics, 56(5): 1549-1559 (in Chinese with English abstract).
|
Valentine, B. J., Hackley, P. C., Enomoto, C. B., et al., 2014. Organic Petrology of the Aptian⁃Age Section in the Downdip Mississippi Interior Salt Basin, Mississippi, USA: Observations and Preliminary Implications for Thermal Maturation History. International Journal of Coal Geology, 136: 38-51. doi: 10.1016/j.coal.2014.10.008
|
Wang, Y. M., Dong, D. Z., Cheng, X. Z., et al., 2014. Electric Property Evidences of the Carbonification of Organic Matters in Marine Shales and Its Geologic Significance: A Case of the Lower Cambrian Qiongzhusi Shale in Southern Sichuan Basin. Natural Gas Industry, 34(8): 1-7 (in Chinese with English abstract).
|
Xiao, Q. L., Liu, A., Li, C. X., et al., 2020. Formation and Evolution of Nanopores in Highly Matured Shales at Over⁃Mature Stage: Insights from the Hydrous Pyrolysis Experiments on Cambrain Shuijintuo Shale from the Middle Yangtze Region. Earth Science, 45(6): 2160-2171 (in Chinese with English abstract).
|
Xiao, X. M., Wang, M. L., Wei, Q., et al., 2015. Evaluation of Lower Paleozoic Shale with Shale Gas Prospect in South China. Natural Gas Geoscience, 26(8): 1433-1445 (in Chinese with English abstract).
|
Xu, M., Zhu, C. Q., Tian, Y. T., et al., 2011. Borehole Temperature Logging and Characteristics of Subsurface Temperature in the Sichuan Basin. Chinese Journal of Geophysics, 54(4): 1052-1060 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5733.2011.04.020
|
Xu, X. M., Sun, W. L., Wang, S. Q., et al., 2019. Maturity Evaluation of Marine Shale in the Lower Paleozoic in South China. Earth Science, 44(11): 3717-3724 (in Chinese with English abstract).
|
Yan, J. F., Men, Y. P., Sun, Y. Y., et al., 2015. Geochemical and Geological Characteristics of the Lower Cambrian Shales in the Middle⁃Upper Yangtze Area of South China and Their Implication for the Shale Gas Exploration. Marine & Petroleum Geology, 70: 1-13.
|
Yan, J. H., Li, Q. G., Zhu, X., 2016. Main Factors Controlling Shale Gas Accumulation and Exploration Targets in the Lower Cambrian, Sichuan Basin and Its Periphery. Petroleum Geology & Experiment, 38(4): 445-452 (in Chinese with English abstract).
|
Yang, W., He, S., Zhai, G. Y., et al. 2021. Maturity Assessment of the Lower Cambrian and Sinian Shales Using Multiple Technical Approaches. Journal of Earth Science, 32(5): 1262-1277. doi: 10.1007/s12583-020-1329-3
|
Zhang, L., Xiong, Y. Q., Chen, Y., et al., 2017. Mechanisms of Shale Gas Generation from Typically Organic⁃Rich Marine Shales. Earth Science, 42(7): 1092-1106 (in Chinese with English abstract).
|
Zhang, T. S., Yang, Y., Gong, Q. S., et al., 2014. Characteristics and Mechanisms of the Micro⁃Pores in the Early Palaeozoic Marine Shale, Southern Sichuan Basin. Acta Geologica Sinica, 88(9): 1728-1740 (in Chinese with English abstract).
|
Zhao, W. Z., Li, J. Z., Yang, T., et al., 2016. Geological Difference and Its Significance of Marine Shale Gases in South China. Petroleum Exploration and Development, 43(4): 499-510 (in Chinese with English abstract). doi: 10.11698/PED.2016.04.01
|
Zhao, W. Z., Wang, Z. Y., Wang, H. J., et al., 2011. Further Discussion on the Connotation and Significance of the Natural Gas Relaying Generation Model from Organic Materials. Petroleum Exploration and Development, 38(2): 129-135 (in Chinese with English abstract). doi: 10.1016/S1876-3804(11)60021-9
|
Zhu, C. Q., Hu, S. B., Qiu, N. S., et al., 2018. Geothermal Constraints on Emeishan Mantle Plume Magmatism: Paleotemperature Reconstruction of the Sichuan Basin, SW China. International Journal of Earth Sciences, 107(1): 71-88. https://doi.org/10.1007/s00531⁃016⁃1404⁃2
|
Zhu, C. Q., Tian, Y. T., Xu, M., et al., 2010. The Effect of Emeishan Supper Mantle Plume to the Thermal Evolution of Source Rocks in the Sichuan Basin. Chinese Journal of Geophysics, 53(1): 119-127 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5733.2010.01.013
|
Zhu, C. Q., Xu, M., Shan, J. N., et al., 2009. Quantifying the Denudations of Major Tectonic Events in Sichuan Basin: Constrained by the Paleothermal Records. Geology in China, 36(6): 1268-1277 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2009.06.008
|
陈国辉, 卢双舫, 刘可禹, 等, 2020. 页岩气在孔隙表面的赋存状态及其微观作用机理. 地球科学, 45(5): 1782-1790. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202005021.htm
|
程克明, 王世谦, 董大忠, 等, 2009. 上扬子区下寒武统筇竹寺组页岩气成藏条件. 天然气工业, 29(5): 40-44, 136. doi: 10.3787/j.issn.1000-0976.2009.05.008
|
何丽娟, 黄方, 刘琼颖, 等, 2014. 四川盆地早古生代构造‒热演化特征. 地球科学与环境学报, 36(2): 10-17. doi: 10.3969/j.issn.1672-6561.2014.02.004
|
黄方, 刘琼颖, 何丽娟, 2012. 晚喜山期以来四川盆地构造‒热演化模拟. 地球物理学报, 55(11): 3742-3753. doi: 10.6038/j.issn.0001-5733.2012.11.021
|
黄金亮, 邹才能, 李建忠, 等, 2012. 川南下寒武统筇竹寺组页岩气形成条件及资源潜力. 石油勘探与开发, 39(1): 69-75. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201201009.htm
|
姜光政, 高堋, 饶松, 等, 2016. 中国大陆地区大地热流数据汇编(第四版). 地球物理学报, 59(8): 2892-2910. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201608015.htm
|
江强, 朱传庆, 邱楠生, 等, 2015. 川南地区热史及下寒武统筇竹寺组页岩热演化特征. 天然气地球科学, 26(8): 1563-1570. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201508018.htm
|
李延钧, 赵圣贤, 黄勇斌, 等, 2013. 四川盆地南部下寒武统筇竹寺组页岩沉积微相研究. 地质学报, 87(8): 1136-1148. doi: 10.3969/j.issn.0001-5717.2013.08.008
|
刘贝, 2022. 泥页岩中有机质: 类型、热演化与有机孔隙. 地球科学, 待刊.
|
刘树根, 邓宾, 钟勇, 等, 2016. 四川盆地及周缘下古生界页岩气深埋藏‒强改造独特地质作用. 地学前缘, 23(1): 11-28. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201601004.htm
|
刘文平, 张成林, 高贵冬, 等, 2017. 四川盆地龙马溪组页岩孔隙度控制因素及演化规律. 石油学报, 38(2): 175-184. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201702005.htm
|
聂海宽, 张金川, 李玉喜, 2011. 四川盆地及其周缘下寒武统页岩气聚集条件. 石油学报, 32(6): 959-967. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201106006.htm
|
饶松, 胡迪, 胡圣标, 等, 2019. 叠合盆地深层构造‒热演化研究方法: 以四川盆地为例. 地质科学, 54(1): 159-175. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX202103013.htm
|
饶松, 唐晓音, 朱传庆, 等, 2011. 敏感性分析在烃源岩成熟度史模拟中的应用: 以川东北地区普光5井古生界海相烃源岩为例. 地质科学, 46(1): 213-225. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201101018.htm
|
饶松, 朱传庆, 王强, 等, 2013. 四川盆地震旦系‒下古生界烃源岩热演化模式及主控因素. 地球物理学报, 56(5): 1549-1559. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201305014.htm
|
王玉满, 董大忠, 程相志, 等, 2014. 海相页岩有机质炭化的电性证据及其地质意义——以四川盆地南部地区下寒武统筇竹寺组页岩为例. 天然气工业, 34(8): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201408002.htm
|
肖七林, 刘安, 李楚雄, 等, 2020. 高演化页岩纳米孔隙在过熟阶段的形成演化特征及主控因素: 中扬子地区寒武系水井沱组页岩含水热模拟实验. 地球科学, 45(6): 2160-2171. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202006027.htm
|
肖贤明, 王茂林, 魏强, 等, 2015. 中国南方下古生界页岩气远景区评价. 天然气地球科学, 26(8): 1433-1445. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201508002.htm
|
徐明, 朱传庆, 田云涛, 等, 2011. 四川盆地钻孔温度测量及现今地热特征. 地球物理学报, 54(4): 1052-1060. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201104022.htm
|
徐学敏, 孙玮琳, 汪双清, 等, 2019. 南方下古生界海相页岩有机质成熟度评价. 地球科学, 44(11): 3717-3724. doi: 10.3799/dqkx.2019.181
|
燕继红, 李启桂, 朱祥, 2016. 四川盆地及周缘下寒武统页岩气成藏主控因素与勘探方向. 石油实验地质, 38(4): 445-452. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201604005.htm
|
张莉, 熊永强, 陈媛, 等, 2017. 中国典型海相富有机质页岩的生气机理. 地球科学, 42(7): 1092-1106. doi: 10.3799/dqkx.2017.088
|
张廷山, 杨洋, 龚其森, 等, 2014. 四川盆地南部早古生代海相页岩微观孔隙特征及发育控制因素. 地质学报, 88(9): 1728-1740. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201409009.htm
|
赵文智, 李建忠, 杨涛, 等, 2016. 中国南方海相页岩气成藏差异性比较与意义. 石油勘探与开发, 43(4): 499-510. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201604002.htm
|
赵文智, 王兆云, 王红军, 等, 2011. 再论有机质"接力成气"的内涵与意义. 石油勘探与开发, 38(2): 129-135. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201102003.htm
|
朱传庆, 田云涛, 徐明, 等, 2010. 峨眉山超级地幔柱对四川盆地烃源岩热演化的影响. 地球物理学报, 53(1): 119-127. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201001014.htm
|
朱传庆, 徐明, 单竞男, 等, 2009. 利用古温标恢复四川盆地主要构造运动时期的剥蚀量. 中国地质, 36(6): 1268-1277. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200906010.htm
|