• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 3
    Mar.  2023
    Turn off MathJax
    Article Contents
    Lei Hongwu, Bai Bing, Cui Yinxiang, Xie Yingchun, Li Jin, Hou Xuewen, 2023. Quantitative Assessment of Calcite Scaling of a High Temperature Geothermal Production Well: Hydrogeochemistry—Application to the Yangbajing Geothermal Fields, Tibet. Earth Science, 48(3): 935-945. doi: 10.3799/dqkx.2022.163
    Citation: Lei Hongwu, Bai Bing, Cui Yinxiang, Xie Yingchun, Li Jin, Hou Xuewen, 2023. Quantitative Assessment of Calcite Scaling of a High Temperature Geothermal Production Well: Hydrogeochemistry—Application to the Yangbajing Geothermal Fields, Tibet. Earth Science, 48(3): 935-945. doi: 10.3799/dqkx.2022.163

    Quantitative Assessment of Calcite Scaling of a High Temperature Geothermal Production Well: Hydrogeochemistry—Application to the Yangbajing Geothermal Fields, Tibet

    doi: 10.3799/dqkx.2022.163
    • Received Date: 2022-03-25
      Available Online: 2023-03-27
    • Publish Date: 2023-03-25
    • Wellbore scaling in high temperature geothermal fields is one of the prominent problems encountered in geothermal development, which involves complex hydrogeochemical processes. In this paper, a coupling model for quantitative assessment of wellbore scaling, including two-phase flow, hydrogeochemical reactions among water-gas-scaling minerals and wellbore adhesion, was established. The wellhead sampling for water, gas and mineral was carried out in typical geothermal wells in the Yangbajing geothermal field. The analysis results show that calcite is the dominant scaling-formed mineral. The geothermal fluid is supersaturated with respect to carbonate minerals. CO2 is the main non-condensable gas in the fluid. Finally, this paper evaluates the location and rate of calcite scaling based on the established model and measured fluid results. The results show that CO2 partial pressure has controlling effect on the precipitation of calcite. The maximum scaling thickness with 14-25 mm occurs 10-20 m above the flash depth for one-year production. Under the assumption that all the precipitation of calcite adheres to the wellbore wall, the scaling thickness is about 200 mm. The high CO2 content in the fluid results in greater thickness of scaling.

       

    • loading
    • Abouie, A., Korrani, A. K., Shirdel, M., et al., 2017. Comprehensive Modeling of Scale Deposition by Use of a Coupled Geochemical and Compositional Wellbore Simulator. SPE Journal, 22(4): 1225-1241. https://doi.org/10.2118/185942-pa
      Akın, T., Kargı, H., 2019. Modeling the Geochemical Evolution of Fluids in Geothermal Wells and Its Implication for Sustainable Energy Production. Geothermics, 77: 115-129. https://doi.org/10.1016/j.geothermics.2018.09.003
      Alhosani, A., Daraboina, N., 2020. Unified Model to Predict Asphaltene Deposition in Production Pipelines. Energy & Fuels, 34(2): 1720-1727. https://doi.org/10.1021/acs.energyfuels.9b04287
      Benoit, W. R., 1989. Carbonate Scaling Characteristics in Dixie Valley, Nevada Geothermal Wellbores. Geothermics, 18(1-2): 41-48. https://doi.org/10.1016/0375-6505(89)90008-4
      Björnsson, G., 1987. A Multi-Feedzone Geothermal Wellbore Simulator (Dissertation). Lawrence Berkeley Laboratory, Berkeley.
      Charlton, S. R., Parkhurst, D. L., 2011. Modules Based on the Geochemical Model PHREEQC for Use in Scripting and Programming Languages. Computers & Geosciences, 37(10): 1653-1663. https://doi.org/10.1016/j.cageo.2011.02.005
      Cleaver, J. W., Yates, B., 1975. A Sub Layer Model for the Deposition of Particles from a Turbulent Flow. Chemical Engineering Science, 30(8): 983-992. https://doi.org/10.1016/0009-2509(75)80065-0
      Coelho, F. M. C., Sepehrnoori, K., Ezekoye, O. A., 2021. Coupled Geochemical and Compositional Wellbore Simulators: A Case Study on Scaling Tendencies under Water Evaporation and CO2 Dissolution. Journal of Petroleum Science and Engineering, 202: 108569. https://doi.org/10.1016/j.petrol.2021.108569
      Demir, M. M., Baba, A., Atilla, V., et al., 2014. Types of the Scaling in Hyper Saline Geothermal System in Northwest Turkey. Geothermics, 50: 1-9. https://doi.org/10.1016/j.geothermics.2013.08.003
      Dobson, P. F., Salah, S., Spycher, N., et al., 2004. Simulation of Water-Rock Interaction in the Yellowstone Geothermal System Using TOUGHREACT. Geothermics, 33(4): 493-502. https://doi.org/10.1016/j.geothermics.2003.10.002
      Fukuyama, M., Chen, F. Y., 2021. Geochemical Characteristics of Silica Scales Precipitated from the Geothermal Fluid at the Onuma Geothermal Power Plant in Japan. Journal of Mineralogical and Petrological Sciences, 116(3): 159-169. https://doi.org/10.2465/jmps.201130b
      Gunn, C., Freeston, D., 1991. An Integrated Steady-State Wellbore Simulation and Analysis Package. The 13th New Zealand Geothermal Workshop, Auckland.
      Guo, Q. H., Yang, C., 2021. Tungsten Anomaly of the High-Temperature Hot Springs in the Daggyai Hydrothermal Area, Tibet, China. Earth Science, 46(7): 2544-2554 (in Chinese with English abstract).
      Iceland Water Chemistry Group, 2010. The Chemical Speciation Program WATCH, Version 2.4. website: ÍSOR - Iceland GeoSurvey, Reykjavik. www.geothermal.is/software.
      Jamialahmadi, M., Soltani, B., Müller-Steinhagen, H., et al., 2009. Measurement and Prediction of the Rate of Deposition of Flocculated Asphaltene Particles from Oil. International Journal of Heat and Mass Transfer, 52(19-20): 4624-4634. https://doi.org/10.1016/j.ijheatmasstransfer.2009.01.049
      Jones, B., Renaut, R. W., 1998. Origin of Platy Calcite Crystals in Hot-Spring Deposits in the Kenya Rift Valley. Journal of Sedimentary Research, 68(5): 913-927. https://doi.org/10.2110/jsr.68.913
      Lei, H. W., Bai, B., Cui, Y. X., et al., 2023. Quantitative Assessment of Calcite Scaling of a High Temperature Geothermal Production Well: Two-Phase Flow—Application to the Yangbajing Geothermal Fields, Tibet. Earth Science, 48(3): 923-934 (in Chinese with English abstract).
      Li, Y. M., Pang, Z. H., 2018. Carbonate Calcium Scale Formation and Quantitative Assessment in Geothermal System. Advances in New and Renewable Energy, 6(4): 274-281 (in Chinese with English abstract).
      Li, Y. M., Pang, Z. H., Galeczka, I. M., 2020. Quantitative Assessment of Calcite Scaling of a High Temperature Geothermal Well in the Kangding Geothermal Field of Eastern Himalayan Syntax. Geothermics, 87: 101844. https://doi.org/10.1016/j.geothermics.2020.101844
      McLin, K. S., Moore, J. N., Bowman, J. R., et al., 2012. Mineralogy and Fluid Inclusion Gas Chemistry of Production Well Mineral Scale Deposits at the Dixie Valley Geothermal Field, USA. Geofluids, 12(3): 216-227. https://doi.org/10.1111/j.1468-8123.2012.00363.x
      Parkhurst, D. L., Appelo, C. A. J., 2013. Description of Input and Examples for PHREEQC Version 3: A Computer Program for Speciation, Batch-Reaction, One-dimensional Transport, and Inverse Geochemical Calculations. U. S. Geological Survey, Denver.
      Sun, B. D., Yuan, Y. F., 1987. Study on Preventing Scaling and Descaling of Geothermal Fluid. Thermal Power Generation, 16(4): 15-19 (in Chinese).
      Wang, X. W., Wang, T. H., Gao, N. A., et al., 2022. Formation Mechanism and Development Potential of Geothermal Resource along the Sichuan-Tibet Railway. Earth Science, 47(3): 995-1011 (in Chinese with English abstract).
      Wang, Y. X., Liu, S. L., Bian, Q. Y., et al., 2015. Scaling Analysis of Geothermal Well from Ganzi and Countermeasures for Anti-Scale. Advances in New and Renewable Energy, 3(3): 202-206 (in Chinese with English abstract).
      Wanner, C., Eichinger, F., Jahrfeld, T., et al., 2017. Causes of Abundant Calcite Scaling in Geothermal Wells in the Bavarian Molasse Basin, Southern Germany. Geothermics, 70: 324-338. https://doi.org/10.1016/j.geothermics.2017.05.001
      Watkinson, A. P., 1970. Particulate Fouling of Sensible Heat Exchangers. University of British Columbia, Vancouver.
      Wei, M. H., Tian, T. S., Sun, Y. D., 2012. A Study of the Scaling Trend of Thermal Groundwater in Kangding County of Sichuan. Hydrogeology & Engineering Geology, 39(5): 132-138 (in Chinese with English abstract).
      Xu, T. F., Feng, G. H., Shi, Y., 2014. On Fluid-Rock Chemical Interaction in CO2-Based Geothermal Systems. Journal of Geochemical Exploration, 144: 179-193. https://doi.org/10.1016/j.gexplo.2014.02.002
      Xu, T. F., Ontoy, Y., Molling, P., et al., 2004. Reactive Transport Modeling of Injection Well Scaling and Acidizing at Tiwi Field, Philippines. Geothermics, 33(4): 477-491. https://doi.org/10.1016/j.geothermics.2003.09.012
      Xu, T. F., Sonnenthal, E., Spycher, N., et al., 2006. TOUGHREACT-A Simulation Program for Non-Isothermal Multiphase Reactive Geochemical Transport in Variably Saturated Geologic Media: Applications to Geothermal Injectivity and CO2 Geological Sequestration. Computers & Geosciences, 32(2): 145-165. https://doi.org/10.1016/j.cageo.2005.06.014
      Xu, T. F., Spycher, N., Sonnenthal, E., et al., 2011. TOUGHREACT Version 2.0: A Simulator for Subsurface Reactive Transport under Non-Isothermal Multiphase Flow Conditions. Computers & Geosciences, 37(6): 763-774. https://doi.org/10.1016/j.cageo.2010.10.007
      Yu, Y., Zhou, X., Fang, B., 2007. Judgement and Analysis of the Scaling Trend of Thermal Groundwater in Beijing's Urban Geothermal Fields. City Geology, 2(2): 14-18 (in Chinese with English abstract). doi: 10.3969/j.issn.1007-1903.2007.02.003
      Zhang, H., Hu, Y. Z., Yun, Z. H., et al., 2016. Applying Hydro-Geochemistry Simulating Technology to Study Scaling of the High-Temperature Geothermal Well in Kangding County. Advances in New and Renewable Energy, 4(2): 111-117 (in Chinese with English abstract).
      Zhou, D. J., 2003. Operation, Problems and Countermeasures of Yangbajing Geothermal Power Station in Tibet. Electric Power Construction, 24(10): 1-3, 9 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-7229.2003.10.001
      Zolfagharroshan, M., Khamehchi, E., 2020. A Rigorous Approach to Scale Formation and Deposition Modelling in Geothermal Wellbores. Geothermics, 87: 101841. https://doi.org/10.1016/j.geothermics.2020.101841
      郭清海, 杨晨, 2021. 西藏搭格架高温热泉中钨的水文地球化学异常. 地球科学, 46(7): 2544-2554. doi: 10.3799/dqkx.2020.287
      雷宏武, 白冰, 崔银祥, 等, 2023. 高温地热生产井碳酸钙结垢定量评价: 两相流动——以西藏羊八井为例. 地球科学, 48(3): 923-934.
      李义曼, 庞忠和, 2018. 地热系统碳酸钙垢形成原因及定量化评价. 新能源进展, 6(4): 274-281. doi: 10.3969/j.issn.2095-560X.2018.04.004
      孙本达, 袁义方, 1987. 防止地热流体结垢和除垢的研究. 热力发电, 16(4): 15-19. https://www.cnki.com.cn/Article/CJFDTOTAL-RLFD198704002.htm
      汪新伟, 王婷灏, 高楠安, 等, 2022. 川藏铁路沿线地热资源形成机理与开发潜力, 地球科学, 47(3): 995-1011. doi: 10.3799/dqkx.2022.059
      王延欣, 刘世良, 边庆玉, 等, 2015. 甘孜地热井结垢分析及防垢对策. 新能源进展, 3(3): 202-206. https://www.cnki.com.cn/Article/CJFDTOTAL-XNYJ201503007.htm
      韦梅华, 田廷山, 孙燕冬, 等, 2012. 四川省康定地区地热水结垢趋势分析. 水文地质工程地质, 39(5): 132-138. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201205025.htm
      于湲, 周训, 方斌, 2007. 北京城区地下热水结垢趋势的判断和分析. 城市地质, 2(2): 14-18. https://www.cnki.com.cn/Article/CJFDTOTAL-CSDZ200702005.htm
      张恒, 胡亚召, 云智汉, 等, 2016. 水文地球化学模拟技术在康定某高温地热井结垢研究中的应用. 新能源进展, 4(2): 111-117. https://www.cnki.com.cn/Article/CJFDTOTAL-XNYJ201602006.htm
      周大吉, 2003. 西藏羊八井地热发电站的运行、问题及对策. 电力建设, 24(10): 1-3, 9. https://www.cnki.com.cn/Article/CJFDTOTAL-DLJS200310001.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)  / Tables(3)

      Article views (1118) PDF downloads(106) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return