Citation: | Lei Hongwu, Bai Bing, Cui Yinxiang, Xie Yingchun, Li Jin, Hou Xuewen, 2023. Quantitative Assessment of Calcite Scaling of a High Temperature Geothermal Production Well: Hydrogeochemistry—Application to the Yangbajing Geothermal Fields, Tibet. Earth Science, 48(3): 935-945. doi: 10.3799/dqkx.2022.163 |
Abouie, A., Korrani, A. K., Shirdel, M., et al., 2017. Comprehensive Modeling of Scale Deposition by Use of a Coupled Geochemical and Compositional Wellbore Simulator. SPE Journal, 22(4): 1225-1241. https://doi.org/10.2118/185942-pa
|
Akın, T., Kargı, H., 2019. Modeling the Geochemical Evolution of Fluids in Geothermal Wells and Its Implication for Sustainable Energy Production. Geothermics, 77: 115-129. https://doi.org/10.1016/j.geothermics.2018.09.003
|
Alhosani, A., Daraboina, N., 2020. Unified Model to Predict Asphaltene Deposition in Production Pipelines. Energy & Fuels, 34(2): 1720-1727. https://doi.org/10.1021/acs.energyfuels.9b04287
|
Benoit, W. R., 1989. Carbonate Scaling Characteristics in Dixie Valley, Nevada Geothermal Wellbores. Geothermics, 18(1-2): 41-48. https://doi.org/10.1016/0375-6505(89)90008-4
|
Björnsson, G., 1987. A Multi-Feedzone Geothermal Wellbore Simulator (Dissertation). Lawrence Berkeley Laboratory, Berkeley.
|
Charlton, S. R., Parkhurst, D. L., 2011. Modules Based on the Geochemical Model PHREEQC for Use in Scripting and Programming Languages. Computers & Geosciences, 37(10): 1653-1663. https://doi.org/10.1016/j.cageo.2011.02.005
|
Cleaver, J. W., Yates, B., 1975. A Sub Layer Model for the Deposition of Particles from a Turbulent Flow. Chemical Engineering Science, 30(8): 983-992. https://doi.org/10.1016/0009-2509(75)80065-0
|
Coelho, F. M. C., Sepehrnoori, K., Ezekoye, O. A., 2021. Coupled Geochemical and Compositional Wellbore Simulators: A Case Study on Scaling Tendencies under Water Evaporation and CO2 Dissolution. Journal of Petroleum Science and Engineering, 202: 108569. https://doi.org/10.1016/j.petrol.2021.108569
|
Demir, M. M., Baba, A., Atilla, V., et al., 2014. Types of the Scaling in Hyper Saline Geothermal System in Northwest Turkey. Geothermics, 50: 1-9. https://doi.org/10.1016/j.geothermics.2013.08.003
|
Dobson, P. F., Salah, S., Spycher, N., et al., 2004. Simulation of Water-Rock Interaction in the Yellowstone Geothermal System Using TOUGHREACT. Geothermics, 33(4): 493-502. https://doi.org/10.1016/j.geothermics.2003.10.002
|
Fukuyama, M., Chen, F. Y., 2021. Geochemical Characteristics of Silica Scales Precipitated from the Geothermal Fluid at the Onuma Geothermal Power Plant in Japan. Journal of Mineralogical and Petrological Sciences, 116(3): 159-169. https://doi.org/10.2465/jmps.201130b
|
Gunn, C., Freeston, D., 1991. An Integrated Steady-State Wellbore Simulation and Analysis Package. The 13th New Zealand Geothermal Workshop, Auckland.
|
Guo, Q. H., Yang, C., 2021. Tungsten Anomaly of the High-Temperature Hot Springs in the Daggyai Hydrothermal Area, Tibet, China. Earth Science, 46(7): 2544-2554 (in Chinese with English abstract).
|
Iceland Water Chemistry Group, 2010. The Chemical Speciation Program WATCH, Version 2.4. website: ÍSOR - Iceland GeoSurvey, Reykjavik.
|
Jamialahmadi, M., Soltani, B., Müller-Steinhagen, H., et al., 2009. Measurement and Prediction of the Rate of Deposition of Flocculated Asphaltene Particles from Oil. International Journal of Heat and Mass Transfer, 52(19-20): 4624-4634. https://doi.org/10.1016/j.ijheatmasstransfer.2009.01.049
|
Jones, B., Renaut, R. W., 1998. Origin of Platy Calcite Crystals in Hot-Spring Deposits in the Kenya Rift Valley. Journal of Sedimentary Research, 68(5): 913-927. https://doi.org/10.2110/jsr.68.913
|
Lei, H. W., Bai, B., Cui, Y. X., et al., 2023. Quantitative Assessment of Calcite Scaling of a High Temperature Geothermal Production Well: Two-Phase Flow—Application to the Yangbajing Geothermal Fields, Tibet. Earth Science, 48(3): 923-934 (in Chinese with English abstract).
|
Li, Y. M., Pang, Z. H., 2018. Carbonate Calcium Scale Formation and Quantitative Assessment in Geothermal System. Advances in New and Renewable Energy, 6(4): 274-281 (in Chinese with English abstract).
|
Li, Y. M., Pang, Z. H., Galeczka, I. M., 2020. Quantitative Assessment of Calcite Scaling of a High Temperature Geothermal Well in the Kangding Geothermal Field of Eastern Himalayan Syntax. Geothermics, 87: 101844. https://doi.org/10.1016/j.geothermics.2020.101844
|
McLin, K. S., Moore, J. N., Bowman, J. R., et al., 2012. Mineralogy and Fluid Inclusion Gas Chemistry of Production Well Mineral Scale Deposits at the Dixie Valley Geothermal Field, USA. Geofluids, 12(3): 216-227. https://doi.org/10.1111/j.1468-8123.2012.00363.x
|
Parkhurst, D. L., Appelo, C. A. J., 2013. Description of Input and Examples for PHREEQC Version 3: A Computer Program for Speciation, Batch-Reaction, One-dimensional Transport, and Inverse Geochemical Calculations. U. S. Geological Survey, Denver.
|
Sun, B. D., Yuan, Y. F., 1987. Study on Preventing Scaling and Descaling of Geothermal Fluid. Thermal Power Generation, 16(4): 15-19 (in Chinese).
|
Wang, X. W., Wang, T. H., Gao, N. A., et al., 2022. Formation Mechanism and Development Potential of Geothermal Resource along the Sichuan-Tibet Railway. Earth Science, 47(3): 995-1011 (in Chinese with English abstract).
|
Wang, Y. X., Liu, S. L., Bian, Q. Y., et al., 2015. Scaling Analysis of Geothermal Well from Ganzi and Countermeasures for Anti-Scale. Advances in New and Renewable Energy, 3(3): 202-206 (in Chinese with English abstract).
|
Wanner, C., Eichinger, F., Jahrfeld, T., et al., 2017. Causes of Abundant Calcite Scaling in Geothermal Wells in the Bavarian Molasse Basin, Southern Germany. Geothermics, 70: 324-338. https://doi.org/10.1016/j.geothermics.2017.05.001
|
Watkinson, A. P., 1970. Particulate Fouling of Sensible Heat Exchangers. University of British Columbia, Vancouver.
|
Wei, M. H., Tian, T. S., Sun, Y. D., 2012. A Study of the Scaling Trend of Thermal Groundwater in Kangding County of Sichuan. Hydrogeology & Engineering Geology, 39(5): 132-138 (in Chinese with English abstract).
|
Xu, T. F., Feng, G. H., Shi, Y., 2014. On Fluid-Rock Chemical Interaction in CO2-Based Geothermal Systems. Journal of Geochemical Exploration, 144: 179-193. https://doi.org/10.1016/j.gexplo.2014.02.002
|
Xu, T. F., Ontoy, Y., Molling, P., et al., 2004. Reactive Transport Modeling of Injection Well Scaling and Acidizing at Tiwi Field, Philippines. Geothermics, 33(4): 477-491. https://doi.org/10.1016/j.geothermics.2003.09.012
|
Xu, T. F., Sonnenthal, E., Spycher, N., et al., 2006. TOUGHREACT-A Simulation Program for Non-Isothermal Multiphase Reactive Geochemical Transport in Variably Saturated Geologic Media: Applications to Geothermal Injectivity and CO2 Geological Sequestration. Computers & Geosciences, 32(2): 145-165. https://doi.org/10.1016/j.cageo.2005.06.014
|
Xu, T. F., Spycher, N., Sonnenthal, E., et al., 2011. TOUGHREACT Version 2.0: A Simulator for Subsurface Reactive Transport under Non-Isothermal Multiphase Flow Conditions. Computers & Geosciences, 37(6): 763-774. https://doi.org/10.1016/j.cageo.2010.10.007
|
Yu, Y., Zhou, X., Fang, B., 2007. Judgement and Analysis of the Scaling Trend of Thermal Groundwater in Beijing's Urban Geothermal Fields. City Geology, 2(2): 14-18 (in Chinese with English abstract). doi: 10.3969/j.issn.1007-1903.2007.02.003
|
Zhang, H., Hu, Y. Z., Yun, Z. H., et al., 2016. Applying Hydro-Geochemistry Simulating Technology to Study Scaling of the High-Temperature Geothermal Well in Kangding County. Advances in New and Renewable Energy, 4(2): 111-117 (in Chinese with English abstract).
|
Zhou, D. J., 2003. Operation, Problems and Countermeasures of Yangbajing Geothermal Power Station in Tibet. Electric Power Construction, 24(10): 1-3, 9 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-7229.2003.10.001
|
Zolfagharroshan, M., Khamehchi, E., 2020. A Rigorous Approach to Scale Formation and Deposition Modelling in Geothermal Wellbores. Geothermics, 87: 101841. https://doi.org/10.1016/j.geothermics.2020.101841
|
郭清海, 杨晨, 2021. 西藏搭格架高温热泉中钨的水文地球化学异常. 地球科学, 46(7): 2544-2554. doi: 10.3799/dqkx.2020.287
|
雷宏武, 白冰, 崔银祥, 等, 2023. 高温地热生产井碳酸钙结垢定量评价: 两相流动——以西藏羊八井为例. 地球科学, 48(3): 923-934.
|
李义曼, 庞忠和, 2018. 地热系统碳酸钙垢形成原因及定量化评价. 新能源进展, 6(4): 274-281. doi: 10.3969/j.issn.2095-560X.2018.04.004
|
孙本达, 袁义方, 1987. 防止地热流体结垢和除垢的研究. 热力发电, 16(4): 15-19. https://www.cnki.com.cn/Article/CJFDTOTAL-RLFD198704002.htm
|
汪新伟, 王婷灏, 高楠安, 等, 2022. 川藏铁路沿线地热资源形成机理与开发潜力, 地球科学, 47(3): 995-1011. doi: 10.3799/dqkx.2022.059
|
王延欣, 刘世良, 边庆玉, 等, 2015. 甘孜地热井结垢分析及防垢对策. 新能源进展, 3(3): 202-206. https://www.cnki.com.cn/Article/CJFDTOTAL-XNYJ201503007.htm
|
韦梅华, 田廷山, 孙燕冬, 等, 2012. 四川省康定地区地热水结垢趋势分析. 水文地质工程地质, 39(5): 132-138. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201205025.htm
|
于湲, 周训, 方斌, 2007. 北京城区地下热水结垢趋势的判断和分析. 城市地质, 2(2): 14-18. https://www.cnki.com.cn/Article/CJFDTOTAL-CSDZ200702005.htm
|
张恒, 胡亚召, 云智汉, 等, 2016. 水文地球化学模拟技术在康定某高温地热井结垢研究中的应用. 新能源进展, 4(2): 111-117. https://www.cnki.com.cn/Article/CJFDTOTAL-XNYJ201602006.htm
|
周大吉, 2003. 西藏羊八井地热发电站的运行、问题及对策. 电力建设, 24(10): 1-3, 9. https://www.cnki.com.cn/Article/CJFDTOTAL-DLJS200310001.htm
|