• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 2
    Feb.  2024
    Turn off MathJax
    Article Contents
    Wang Xuhui, Lang Xinghai, Liang Haihui, Du Liangyi, Deng Yulin, He Qing, Dong Mi, 2024. Petrogenesis and Geodynamic Processes of the Mamba Granodiorite, Central Lhasa Block, Xizang. Earth Science, 49(2): 577-593. doi: 10.3799/dqkx.2022.167
    Citation: Wang Xuhui, Lang Xinghai, Liang Haihui, Du Liangyi, Deng Yulin, He Qing, Dong Mi, 2024. Petrogenesis and Geodynamic Processes of the Mamba Granodiorite, Central Lhasa Block, Xizang. Earth Science, 49(2): 577-593. doi: 10.3799/dqkx.2022.167

    Petrogenesis and Geodynamic Processes of the Mamba Granodiorite, Central Lhasa Block, Xizang

    doi: 10.3799/dqkx.2022.167
    • Received Date: 2022-12-27
    • Publish Date: 2024-02-25
    • In order to discuss thedynamic mechanism of Late Cretaceous magmatism in the Lhasa block, this paper carried out petrographic, chronological, geochemical and mineral chemistry studies on the Menba granodiorites in the southern margin of the central Lhasa block. LA-ICP-MS zircon U-Pb dating indicates that the Menba granodiorites emplaced in the Late Cretaceous (83.2 Ma±0.9 Ma). The geochemical characteristics show that the Menba granodiorites are adakitic rocks. Electron microprobe data reveal that plagioclase belongs to andesine and oligoclase (An=16.2-34.7). This paper believes that the parent magmas of the Menba granodiorites may be a result of magma mixing between mantle- and crust-derived magmas and the mantle-derived magma underplating may have led to partial melting of the thickened lower crust and then reactions between them. Combined with the diagenetic environment and spatial distribution characteristics of the Late Cretaceous magmatic rocks. This paper concludes that the Late Cretaceous magmatism in the southern Lhasa block was mainly controlled by the ridge subduction of the Neo-Tethys. The upwelling of asthenosphere mantle along the slab window of the mid-ocean ridge induced the Late Cretaceous large-scale magmatism in the southern margin of the south Lhasa block, while the upwelling of asthenosphere material along the tear slab window of transition fault that cuts the mid-ocean ridge induced the small-scale intraplate magmatic belt, which approximately perpendicular to the large-scale magmatism in the southern margin of the south Lhasa block.

       

    • loading
    • Atherton, M. P., Petford, N., 1993. Generation of Sodium-Rich Magmas from Newly Underplated Basaltic Crust. Nature, 362(6416): 144-146. https://doi.org/10.1038/362144a0
      Castillo, P. R., Janney, P. E., Solidum, R. U., 1999. Petrology and Geochemistry of Camiguin Island, Southern Philippines: Insights to the Source of Adakites and other Lavas in a Complex Arc Setting. Contributions to Mineralogy and Petrology, 134(1): 33-51. https://doi.org/10.1007/s004100050467
      Chu, M. F., Chung, S. L., Song, B., et al., 2006. Zircon U-Pb and Hf Isotope Constraints on the Mesozoic Tectonics and Crustal Evolution of Southern Xizang. Geology, 34(9): 745. https://doi.org/10.1130/g22725.1
      Dai, J. G., Wang, C. S., Polat, A., et al., 2013. Rapid Forearc Spreading between 130 and 120 Ma: Evidence from Geochronology and Geochemistry of the Xigaze Ophiolite, Southern Xizang. Lithos, 172-173: 1-16. https://doi.org/10.1016/j.lithos.2013.03.011
      Defant, M. J., Drummond, M. S., 1990. Derivation of some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347(6294): 662-665. https://doi.org/10.1038/347662a0
      Dong, G. C., Mo, X. X., Zhao, Z. D., et al., 2006. Magma Mixing in Middle Part of Gangdise Magma Belt: Evidences from Granitoid Complex. Acta Petrologica Sinica, 22(4): 835-844 (in Chinese with English abstract)
      Dong, M., Lang, X. H., Deng, Y. L., et al., 2021. Geochronology and Geochemistry Implications for the Early Eocene Rongma Gabbros in the Southern Margin of the Lhasa Terrane, Xizang. Earth Science, 47: 1349-1370 (in Chinese with English abstract).
      Dong, X., Zhang, Z. M., Santosh, M., 2010. Zircon U-Pb Chronology of the Nyingtri Group, Southern Lhasa Terrane, Xizangan Plateau: Implications for Grenvillian and Pan-African Provenance and Mesozoic-Cenozoic Metamorphism. The Journal of Geology, 118(6): 677-690. https://doi.org/10.1086/656355
      Gianni, G. M., Navarrete, C., Spagnotto, S., 2019. Surface and Mantle Records Reveal an Ancient Slab Tear Beneath Gondwana. Scientific Reports, 9(1): 1-10. https://doi.org/10.1038/s41598-019-56335-9
      Gorring, M. L., Kay, S. M., 2001. Mantle Processes and Sources of Neogene Slab Window Magmas from Southern Patagonia, Argentina. Journal of Petrology, 42(6): 1067-1094. https://doi.org/10.1093/petrology/42.6.1067
      Hoskin, P. W. O., Black, L. P., 2000. Metamorphic Zircon Formation by Solid-State Recrystallization of Protolith Igneous Zircon. Journal of Metamorphic Geology, 18(4): 423-439. https://doi.org/10.1046/j.1525-1314. 2000.00266.x doi: 10.1046/j.1525-1314.2000.00266.x
      Hou, K. J., Li, Y. H., Tian, Y. R., 2009. In Situ U-Pb Zircon Dating Using Laser Ablation-Multi Ion Counting-ICP-MS. Mineral Deposit, 28(4): 481-492 (in Chinese with English abstract)
      Hou, Z. Q., Gao, Y. F., Qu, X. M., et al., 2004. Origin of Adakitic Intrusives Generated during Mid-Miocene East-West Extension in Southern Xizang. Earth and Planetary Science Letters, 220(1/2): 139-155. https://doi.org/10.1016/s0012-821x(04)00007-x
      Ji, W. Q., Wu, F. Y., Chung, S. L., et al., 2009. Zircon U-Pb Geochronology and Hf Isotopic Constraints on Petrogenesis of the Gangdese Batholith, Southern Xizang. Chemical Geology, 262(3/4): 229-245. https://doi.org/10.1016/j.chemgeo.2009.01.020
      Jiang, Z. Q., Wang, Q., Li, Z. X., et al., 2012. Late Cretaceous (ca. 90Ma) Adakitic Intrusive Rocks in the Kelu Area, Gangdese Belt (southern Xizang): Slab Melting and Implications for Cu-Au Mineralization. Journal of Asian Earth Sciences, 53(3-4): 67-81. https://doi.org/10.1016/j.jseaes.2012.02.010
      Lang, X. H., Deng, Y. L., Wang, X. H., et al., 2020. Geochronology and Geochemistry of Volcanic Rocks of the Bima Formation, Southern Lhasa Subterrane, Xizang: Implications for Early Neo-Tethyan Subduction. Gondwana Research, 80(B5): 335-349. https://doi.org/10.1016/j.gr.2019.11.005
      Lang, X. H., Wang, X. H., Deng, Y. L., et al., 2019. Early Jurassic Volcanic Rocks in the Xiongcun District, Southern Lhasa Subterrane, Xizang: Implications for the Tectono-Magmatic Events Associated with the Early Evolution of the Neo-Tethys Ocean. Lithos, 340-341(1): 166-180. https://doi.org/10.1016/j.lithos.2019.05.014
      Leier, A. L., DeCelles, P. G., Kapp, P., et al., 2007. The Takena Formation of the Lhasa Terrane, Southern Xizang: The Record of a Late Cretaceous Retroarc Foreland Basin. Geological Society of America Bulletin, 119(1/2): 31-48. https://doi.org/10.1130/b25974.1
      Liu, J. H., Xie, C. M., Li, C., et al., 2019. Origins and Tectonic Implications of Late Cretaceous Adakite and Primitive High-Mg Andesite in the Songdo Area, Southern Lhasa Subterrane, Xizang. Gondwana Research, 76(10): 185-203. https://doi.org/10.1016/j.gr.2019.06.014
      Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      Liu, L., Xu, X. S., Xia, Y., 2016. Asynchronizing Paleo-Pacific Slab Rollback beneath SE China: Insights from the Episodic Late Mesozoic Volcanism. Gondwana Research, 37(1): 397-407. https://doi.org/10.1016/j.gr.2015.09.009
      Ludwig, K. R., 2003. Users Manualf or Isoplot 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication, 4: 1-71.
      Ma, B. J., Wu, S. G., Fan, J. K., 2015. An Overview of Slab Window. Marine Geology Frontiers, 31(12): 1-10 (in Chinese with English abstract)
      Ma, C., Xiao, W. J., Windley, B. F., et al., 2012. Tracing a Subducted Ridge-Transform System in a Late Carboniferous Accretionary Prism of the Southern Altaids: Orthogonal Sanukitoid Dyke Swarms in Western Junggar, NW China. Lithos, 140-141: 152-165. https://doi.org/10.1016/j.lithos.2012.02.005
      Ma, L., Wang, Q., Wyman, D. A., et al., 2013a. Late Cretaceous (100-89 Ma) Magnesian Charnockites with Adakitic Affinities in the Milin Area, Eastern Gangdese: Partial Melting of Subducted Oceanic Crust and Implications for Crustal Growth in Southern Xizang. Lithos, 175-176(5): 315-332. https://doi.org/10.1016/j.lithos.2013.04.006
      Ma, L., Wang, Q., Li, Z. X., et al., 2013b. Early Late Cretaceous (ca. 93 Ma) Norites and Hornblendites in the Milin Area, Eastern Gangdese: Lithosphere-Asthenosphere Interaction during Slab Roll-Back and an Insight into Early Late Cretaceous (ca. 100-80 Ma) Magmatic "Flare-Up" in Southern Lhasa (Xizang). Lithos, 172-173(8): 17-30. https://doi.org/10.1016/j.lithos.2013.03.007
      Ma, L., Wang, Q., Wyman, D. A., et al., 2015. Late Cretaceous Back-Arc Extension and Arc System Evolution in the Gangdese Area, Southern Xizang: Geochronological, Petrological, and Sr-Nd-Hf-O Isotopic Evidence from Dagze Diabases. Journal of Geophysical Research: Solid Earth, 120(9): 6159-6181. https://doi.org/10.1002/2015jb011966
      Macpherson, C. G., Dreher, S. T., Thirlwall, M. F., 2006. Adakites without Slab Melting: High Pressure Differentiation of Island Arc Magma, Mindanao, the Philippines. Earth and Planetary Science Letters, 243 (3-4): 581-593. https://doi.org/10.1016/j.epsl.2005.12.034
      McLeod, O. E., Brenna, M., Briggs, R. M., et al., 2022. Slab Tear as a Cause of Coeval Arc-Intraplate Volcanism in the Alexandra Volcanic Group, New Zealand. Lithos, 408-409(1-4): 106564. https://doi.org/10.1016/j.lithos.2021.106564
      Meng, F. Y., Zhao, Z. D., Zhu, D. C., et al., 2014. Late Cretaceous Magmatism in Mamba Area, Central Lhasa Subterrane: Products of Back-Arc Extension of Neo-Tethyan Ocean? Gondwana Research, 26(2): 505-520. https://doi.org/10.1016/j.gr.2013.07.017
      Rapp, R. P., Watson, E. B., 1995. Dehydration Melting of Metabasalt at 8-32 Kbar: Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4): 891-931. https://doi.org/10.1093/petrology/36.4.891
      Rosenbaum, G., Gasparon, M., Lucente, F. P., et al., 2008. Kinematics of Slab Tear Faults during Subduction Segmentation and Implications for Italian Magmatism. Tectonics, 27(2): 119-134. https://doi.org/10.1029/2007TC002143
      Schiano, P., Monzier, M., Eissen, J. P., et al., 2010. Simple Mixing as the Major Control of the Evolution of Volcanic Suites in the Ecuadorian Andes. Contribution to Mineralogy and Petrology, 160: 297-312. https://doi.org/10.1007/s00410-009-0478-2
      Streck, M. J., Leeman, W. P., Chesley, J., 2007. High-Magnesian Andesite from Mount Shasta: A Product of Magma Mixing and Contamination, not a Primitive Mantle Melt. Geology, 35(4): 351. https://doi.org/10.1130/g23286a.1
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Wang, Q., Wyman, D. A., Xu, J. F., et al., 2008. Eocene Melting of Subducting Continental Crust and Early Uplifting of Central Xizang: Evidence from Central-Western Qiangtang High-K Calc-Alkaline Andesites, Dacites and Rhyolites. Earth and Planetary Science Letters, 272(1/2): 158-171. https://doi.org/10.1016/j.epsl.2008.04.034
      Wang, X. H., Lang, X. H., Deng, Y. L., et al., 2022a. Early Mesozoic Magmatism Records the Tectonic Evolution from Syn- To Post-Collisional Setting in the Central Lhasa Subterrane, Xizang. Lithos, 416-417(6): 106642. https://doi.org/10.1016/j.lithos.2022.106642
      Wang, X. H., Lang, X. H., Klemd, R., et al., 2022b. Subduction Initiation of the Neo-Tethys Oceanic Lithosphere by Collision-Induced Subduction Transference. Gondwana Research, 104(1): 54-69. https://doi.org/10.1016/j.gr.2021.08.012
      Wang, X. H., Lang, X. H., Tang, J. X., et al., 2019. Early-Middle Jurassic (182-170 Ma) Ruocuo Adakitic Porphyries, Southern Margin of the Lhasa Terrane, Xizang: Implications for Geodynamic Setting and Porphyry Cu-Au Mineralization. Journal of Asian Earth Sciences, 173: 336-351. https://doi.org/10.1016/j.jseaes.2019.01.042
      Wang, X. H., Lang, X. H., Tang, J. X., et al., 2020. Early Carboniferous Back-Arc Rifting-Related Magmatism in Southern Xizang: Implications for the History of the Lhasa Terrane Separation from Gondwana. Tectonics, 39(10): e2020TC006237. https://doi.org/10.1029/2020tc006237
      Wang, Z. Z., Zhao, Z. D., Li, X. P., et al., 2021. Late Cretaceous Adakitic and A-Type Granitoids in Chanang, Southern Xizang: Implications for Neo-Tethyan Slab Rollback. Gondwana Research, 96: 89-104. https://doi.org/10.1016/j.gr.2021.04.007
      Wen, D. R., Chung, S. L., Song, B., et al., 2008. Late Cretaceous Gangdese Intrusions of Adakitic Geochemical Characteristics, SE Xizang: Petrogenesis and Tectonic Implications. Lithos, 105(1/2): 1-11. https://doi.org/10.1016/j.lithos.2008.02.005
      Xu, J. F., Shinjo, R., Defant, M. J., et al., 2002. Origin of Mesozoic Adakitic Intrusive Rocks in the Ningzhen Area of East China: Partial Melting of Delaminated Lower Continental Crust?. Geology, 30(12): 1111. https://doi.org/10.1130/0091-7613(2002)030<1111:oomair>2.0.co;2 doi: 10.1130/0091-7613(2002)030<1111:oomair>2.0.co;2
      Xu, W. C., Zhang, H. F., Luo, B. J., et al., 2015. Adakite-Like Geochemical Signature Produced by Amphibole-Dominated Fractionation of Arc Magmas: An Example from the Late Cretaceous Magmatism in Gangdese Belt, South Xizang. Lithos, 232: 197-210. https://doi.org/10.1016/j.lithos.2015.07.001
      Zhang, L. L., Zhu, D. C., Wang, Q., et al., 2019. Late Cretaceous Volcanic Rocks in the Sangri Area, Southern Lhasa Terrane, Xizang: Evidence for Oceanic Ridge Subduction. Lithos, 326-327(271): 144-157. https://doi.org/10.1016/j.lithos.2018.12.023
      Zhang, Z. M., Zhao, G. C., Santosh, M., et al., 2010. Late Cretaceous Charnockite with Adakitic Affinities from the Gangdese Batholith, Southeastern Xizang: Evidence for Neo-Tethyan Mid-Ocean Ridge Subduction? Gondwana Research, 17(4): 615-631. https://doi.org/10.1016/j.gr.2009.10.007
      Zhang, Z. M., Dong, X., Xiang, H., et al., 2014. Metagabbros of the Gangdese Arc Root, South Xizang: Implications for the Growth of Continental Crust. Geochimica et Cosmochimica Acta, 143(B11): 268-284. https://doi.org/10.1016/j.gca.2014.01.045
      Zhang, S., Li, Y., Li, F., et al., 2020. Zircon U-Pb Geochronology, Geochemistry and Petrogenesis of Miocene Syenite in Chazi Area, Xizang. Earth Science, 45(8): 2882-2893. https://doi.org/10.3799/dqkx.2020.163
      Zhao, Z. D., Mo, X. X., Dilek, Y., et al., 2009. Geochemical and Sr-Nd-Pb-O Isotopic Compositions of the Post-Collisional Ultrapotassic Magmatism in SW Xizang: Petrogenesis and Implications for India Intra-Continental Subduction beneath Southern Xizang. Lithos, 113(1/2): 190-212. https://doi.org/10.1016/j.lithos.2009.02.004
      Zheng, Y. C., Hou, Z. Q., Gong, Y. L., et al., 2014. Petrogenesis of Cretaceous Adakite-Like Intrusions of the Gangdese Plutonic Belt, Southern Xizang: Implications for Mid-Ocean Ridge Subduction and Crustal Growth. Lithos, 190-191(3-4): 240-263. https://doi.org/10.1016/j.lithos.2013.12.013
      Zhu, D. C., Wang, Q., Chung, S. L., et al., 2019. Gangdese Magmatism in Southern Xizang and India-Asia Convergence since 120 Ma. Geological Society Special Publication, 483(1): 583-604. https://doi.org/10.1144/SP483.14
      Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2013. The Origin and Pre-Cenozoic Evolution of the Xizangan Plateau. Gondwana Research, 23(4): 1429-1454. https://doi.org/10.1016/j.gr.2012.02.002
      董国臣, 莫宣学, 赵志丹, 等, 2006. 冈底斯岩浆带中段岩浆混合作用: 来自花岗杂岩的证据. 岩石学报, 2006(04): 835-844. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200604007.htm
      董咪, 郎兴海, 邓煜霖, 等, 2022. 拉萨地体南缘早始新世荣玛辉长岩年代学、岩石地球化学特征及其地质意义. 地球科学, 47: 1349-1370. doi: 10.3799/dqkx.2021.137
      侯可军, 李延河, 田有荣, 2009. LA-MC-ICP-MS锆石微区原位U-Pb定年技术. 矿床地质, 28(4): 481-492. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200904009.htm
      马本俊, 吴时国, 范建柯, 2015. 板片窗构造研究综述. 海洋地质前沿, 31(12): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201512001.htm
      张士贞, 李勇, 李奋其, 等, 2020. 西藏查孜地区中新世正长岩的锆石U-Pb年代学、地球化学及岩石成因. 地球科学, 45(8): 2882-2893. doi: 10.3799/dqkx.2020.163
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(4)

      Article views (430) PDF downloads(75) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return