• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 1
    Jan.  2023
    Turn off MathJax
    Article Contents
    Liu Huimin, Zhang Shun, Wang Xuejun, Zhang Pengfei, Li Junliang, Wang Yong, Wei Xiaoliang, Yin Yan, Zhu Deyan, 2023. Types and Characteristics of Shale Lithofacies Combinations in Continental Faulted Basins: A Case Study from Upper Sub-Member of Es4 in Dongying Sag, Jiyang Depression. Earth Science, 48(1): 30-48. doi: 10.3799/dqkx.2022.183
    Citation: Liu Huimin, Zhang Shun, Wang Xuejun, Zhang Pengfei, Li Junliang, Wang Yong, Wei Xiaoliang, Yin Yan, Zhu Deyan, 2023. Types and Characteristics of Shale Lithofacies Combinations in Continental Faulted Basins: A Case Study from Upper Sub-Member of Es4 in Dongying Sag, Jiyang Depression. Earth Science, 48(1): 30-48. doi: 10.3799/dqkx.2022.183

    Types and Characteristics of Shale Lithofacies Combinations in Continental Faulted Basins: A Case Study from Upper Sub-Member of Es4 in Dongying Sag, Jiyang Depression

    doi: 10.3799/dqkx.2022.183
    • Received Date: 2022-01-21
      Available Online: 2023-02-01
    • Publish Date: 2023-01-25
    • There are no relevant research results and technical methods on the classification of shale lithofacies combinations in continental faulted basins, and the basic characteristics of different shale lithofacies assemblages need to be further clarified. Based on the fine observation and description of the core samples, the basic rock and lithofacies types of the sampled shale sections were identified by observing rock thin sections and performing X-ray-based full-rock mineral diffraction analysis. By analyzing the major mineral composition and major and trace element contents of the samples, information about the sedimentary paleoenvironment of the Jiyang Depression was extracted. According to the basic characteristics of the four paleoenvironment factors (paleoclimate, paleosource, paleosalinity, paleowater depth), the shale stratigraphy of the Upper Sub-member of the Fourth Member of Shahejie Formation (Es4s) in the Dongying Sag was divided into lithofacies combinations based on the principle of sedimentary environment similarity and internal structure uniformity. A lithofacies combination classification scheme based on sedimentary environment control was established, and combined with reservoir and organic geochemical analysis, the main lithofacies combination reservoir and oil-bearing characteristics were clarified. Results show that: (1) Es4s shale in the Dongying Sag is a typical carbonate-rich shale (carbonate shale) and mixed shale, with significant lamination features, various types of pores, well-developed bedding and structural fractures, high organic matter abundance, moderate-to-low evolutionary degree, deep burial depth and high pressure coefficient. (2) Based on sedimentary structural position and paleoenvironment, the Es4s shale in the Dongying Sag can be divided into 8 lithofacies combinations. In the central part of the basin, the matrix carbonate shale lithofacies combination is dominant, with some interbedded block dolomite shale lithofacies combination. In the northern steep slope belt, the sandstone interbedded shale lithofacies combination is mainly developed, and in the southern gentle slope belt, the block dolomite shale interbedded lithofacies combination and the laminar carbonate mudstone and dolomite shale interbedded lithofacies combination are mainly developed. (3) In general, as the main body of fine-grained sediments, the Es4s matrix shale stratigraphy in the center of the Dongying Sag develops from bottom to top: laminar carbonate shale interbedded with block dolomite shale lithofacies, laminar carbonate shale and dolomite shale interbedded lithofacies, laminar carbonate shale and carbonate mudstone interbedded lithofacies, laminar carbonate shale interbedded with carbonate mudstone lithofacies, laminated carbonate shale and carbonate mudstone interbedded lithofacies, laminated carbonate shale interbedded with carbonate mudstone lithofacies, etc., revealing the change in sedimentary paleoenvironment from arid, brackish water, semi-deep water, and less source rocks to semi-wet, semi-brackish water, deep water, and more source rocks. (4) The laminar carbonate shale interbedded with carbonate mudstone lithofacies combination and the laminar carbonate shale and carbonate mudstone interbedded lithofacies combination are the most developed, with a variety of reservoir space types, high proportion of large-diameter pores and good connectivity. The laminar carbonate shale and carbonate mudstone interbedded lithofacies combination has relatively high oil saturation, and is also a favorable lithofacies combination type for achieving breakthroughs in shale oil in the Jiyang Depression. The laminar carbonate shale interbedded with block-type dolomite shale lithofacies combination has good oil-bearing and brittle properties. Further analysis of the basic geological characteristics and oil-bearing characteristics of different lithofacies combinations and determination of the development and distribution characteristics of the main shale lithofacies combinations are of practical significance for exploring shale oil in continental faulted basins.

       

    • loading
    • Abouelresh, M. O., Slatt, R. M., 2012. Lithofacies and Sequence Stratigraphy of the Barnett Shale in East-Central Fort Worth Basin, Texas. AAPG Bulletin, 96(1): 1-22. https://doi.org/10.1306/04261110116
      Cao, Y. C., Zhang, Q. Q., Wang, Y. Z., et al., 2017. Delta Front Gravity Flow Deposits in the Middle Submember of the Third Member of the Shahejie Formation in the Dongying Depression: Lithofacies and Lithofacies Association Types and Their Distribution. Sedimentary Geology and Tethyan Geology, 37(1): 9-17 (in Chinese with English abstract). doi: 10.3969/j.issn.1009-3850.2017.01.002
      Chen, S. Y., Zhang, S., Liu, H. M., et al., 2017. Discussion on Mixing of Fine-Grained Sediments in Lacustrine Deep Water. Journal of Palaeogeography (Chinese Edition), 19(2): 271-284 (in Chinese with English abstract).
      Chen, S. Y., Zhang, S., Wang, Y. S., et al., 2016. Lithofacies Types and Reservoirs of Paleogene Fine-Grained Sedimentary Rocks in Dongying Sag, Bohai Bay Basin. Petroleum Exploration and Development, 43(2): 198-208 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S1876380416300258
      Deng, H. W., Qian, K., 1990. The Genetic Types and Association Evolution of Deep Lacustrine Facies Mudstones. Acta Sedimentologica Sinica, 8(3): 1-21 (in Chinese with English abstract).
      Fu, J. H., Deng, X. Q., Chu, M. J., et al., 2013. Features of Deepwater Lithofacies, Yanchang Formation in Ordos Basin and Its Petroleum Significance. Acta Sedimentologica Sinica, 31(5): 928-938 (in Chinese with English abstract).
      Guo, X. S., 2022. Discussion and Research Direction of Future Onshore Oil and Gas Exploration in China. Earth Science, 47(10): 3511-3523 (in Chinese with English abstract).
      Hickey, J. J., Henk, B., 2007. Lithofacies Summary of the Mississippian Barnett Shale, Mitchell 2 T. P. Sims Well, Wise County, Texas. AAPG Bulletin, 91(4): 437-443. https://doi.org/10.1306/12040606053
      Jiang, Z. X., Liang, C., Wu, J., et al., 2013. Several Issues in Sedimentological Studies on Hydrocarbon-Bearing Fine-Grained Sedimentary Rocks. Acta Petrolei Sinica, 34(6): 1031-1039 (in Chinese with English abstract).
      Jiang, Z. X., Zhang, W. Z., Liang, C., et al., 2014. Characteristics and Evaluation Elements of Shale Oil Reservoir. Acta Petrolei Sinica, 35(1): 184-196 (in Chinese with English abstract).
      Krumbein, W. C., 1932. The Mechanical Analysis of Fine-Grained Sediments. Journal of Sedimentary Research, 2(3): 140-149. https://doi.org/10.2110/jsr.2.140
      Liang, C., Jiang, Z. X., Yang, Y. T., et al., 2012. Characteristics of Shale Lithofacies and Reservoir Space of the Wufeng-Longmaxi Formation, Sichuan Basin. Petroleum Exploration and Development, 39(6): 691-698 (in Chinese with English abstract).
      Liu, H. M., Wang, Y., Yang, Y. H., et al., 2020. Sedimentary Environment and Lithofacies of Fine-Grained Hybrid Sedimentary in Dongying Sag: A Case of Fine-Grained Sedimentary System of the Es4. Earth Science, 45(10): 3543-3555 (in Chinese with English abstract).
      Liu, Z. X., Xu, L. L., Wen, Y. R., et al., 2022. Accumulation Characteristics and Comprehensive Evaluation of Shale Gas in Cambrian Niutitang Formation, Hubei. Earth Science, 47(5): 1586-1603 (in Chinese with English abstract).
      Loucks, R. G., Ruppel, S. C., 2007. Mississippian Barnett Shale: Lithofacies and Depositional Setting of a Deep-Water Shale-Gas Succession in the Fort Worth Basin, Texas. AAPG Bulletin, 91(4): 579-601. https://doi.org/10.1306/11020606059
      Lü, D. W., Wang, D. D., Li, Z. X., et al., 2017. Depositional Environment, Sequence Stratigraphy and Sedimentary Mineralization Mechanism in the Coal Bed- and Oil Shale-Bearing Succession: A Case from the Paleogene Huangxian Basin of China. Journal of Petroleum Science and Engineering, 148: 32-51. https://doi.org/10.1016/j.petrol.2016.09.028
      Ma, W. X., Liu, S. G., Huang, W. M., et al., 2012. Mud Shale Reservoirs Characteristics of Qiongzhusi Formation on the Margin of Sichuan Basin, China. Journal of Chengdu University of Technology (Science & Technology Edition), 39(2): 182-189 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-9727.2012.02.011
      MacQuaker, J. H. S., Taylor, K. G., Keller, M., et al., 2014. Compositional Controls on Early Diagenetic Pathways in Fine-Grained Sedimentary Rocks: Implications for Predicting Unconventional Reservoir Attributes of Mudstones. AAPG Bulletin, 98(3): 587-603. https://doi.org/10.1306/08201311176
      Milliken, K. L., Esch, W. L., Reed, R. M., et al., 2012. Grain Assemblages and Strong Diagenetic Overprinting in Siliceous Mudrocks, Barnett Shale (Mississippian), Fort Worth Basin, Texas. AAPG Bulletin, 96(8): 1553-1578. https://doi.org/10.1306/12011111129
      Milliken, K. L., Rudnicki, M., Awwiller, D. N., et al., 2013. Organic Matter-Hosted Pore System, Marcellus Formation (Devonian), Pennsylvania. AAPG Bulletin, 97(2): 177-200. https://doi.org/10.1306/07231212048
      Ning, F. X., 2015. Mechanism of Shale Oil Enrichment in Jiyang Depression. Special Oil & Gas Reservoirs, 22(3): 27-30, 152 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-6535.2015.03.006
      Peng, X. F., Wang, L. J., Jiang, L. P., 2012. Geochemical Characteristics of the Lucaogou Formation Oil Shale in the Southeastern Margin of the Junggar Basin and Its Environmental Implications. Bulletin of Mineralogy, Petrology and Geochemistry, 31(2): 121-127, 151 (in Chinese with English abstract). doi: 10.2110/jsr.69.909
      Schieber, J., 1999. Distribution and Deposition of Mudstone Facies in the Upper Devonian Sonyea Group of New York. Journal of Sedimentary Research, 69(4): 909-925. https://doi.org/10.2110/jsr.69.909
      Song, M. S., 2019. Practice and Current Status of Shale Oil Exploration in Jiyang Depression. Petroleum Geology and Recovery Efficiency, 26(1): 1-12 (in Chinese with English abstract).
      Song, M. S., Liu, H. M., Wang, Y., et al., 2020. Enrichment Rules and Exploration Practices of Paleogene Shale Oil in Jiyang Depression, Bohai Bay Basin, China. Petroleum Exploration and Development, 47(2): 225-235 (in Chinese with English abstract). doi: 10.1016/S1876-3804(20)60041-6
      Teng, J. B., 2018. Genesis of Dolomite in Shale Drilled by Well Liye1 in Dongying Sag and Its Significance on Sequence Boundary Indication. Petroleum Geology and Recovery Efficiency, 25(2): 1-7, 36 (in Chinese with English abstract).
      Wang, G. M., 2012. Laminae Combination and Genetic Classification of Eogene Shale in Jiyang Depression. Journal of Jilin University (Earth Science Edition), 42(3): 666-671, 680 (in Chinese with English abstract).
      Wang, H. B., 2009. Research of the Depositional Period inside Glutenite Body in Yanjia Oilfield of Dongying Depression. Journal of Oil and Gas Technology, 31(5): 45-49, 430 (in Chinese with English abstract).
      Wang, Y., Wang, X. J., Song, G. Q., et al., 2016. Genetic Connection between Mud Shale Lithofacies and Shale Oil Enrichment in Jiyang Depression, Bohai Bay Basin. Petroleum Exploration and Development, 43(5): 696-704 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S187638041630091X
      Wang, Y. S., Wang, W. Q., Hao, Y. Q., 2013. Shale Reservoir Characteristics Analysis of the Paleogene Shahejie Formation in Luojia Area of Zhanhua Sag, Jiyang Depression. Journal of Palaeogeography, 15(5): 657-662 (in Chinese with English abstract).
      Wu, X. L., Gao, B., Ye, X., et al., 2013. Shale Oil Accumulation Conditions and Exploration Potential of Faulted Basins in the East of China. Oil & Gas Geology, 34(4): 455-462 (in Chinese with English abstract).
      Yang, W. Q., Jiang, Y. L., Wang, Y., 2015. Study on Shale Facies Sedimentary Environment of Lower Es3-Upper Es4 in Dongying Sag. Journal of China University of Petroleum (Edition of Natural Science), 39(4): 19-26 (in Chinese with English abstract).
      Yuan, X. J., Lin, S. H., Liu, Q., et al., 2015. Lacustrine Fine-Grained Sedimentary Features and Organic-Rich Shale Distribution Pattern: A Case Study of Chang 7 Member of Triassic Yanchang Formation in Ordos Basin, NW China. Petroleum Exploration and Development, 42(1): 34-43 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S1876380415600040
      Zhang, S., Chen, S. Y., Tan, M. Y., et al., 2014. Characterization of Sedimentary Microfacies of Shale in the Lower Third Sub-Member of Shahejie Formation, Western Dongying Sag. Acta Petrolei Sinica, 35(4): 633-645 (in Chinese with English abstract).
      Zhang, S., Liu, H. M., Song, G. Q., et al., 2016. Genesis and Control Factors of Shale Oil Reserving Space in Dongying Sag. Acta Petrolei Sinica, 37(12): 1495-1507, 1527 (in Chinese with English abstract).
      Zhang, X. R., Fang, S., Hu, K., et al., 2011. Paleo-Climate Analysis of the Geochemical Element Records in the Late Holocene Peat Deposits of Dunhua Basin, NE China. Arid Land Geography, 34(5): 726-732 (in Chinese with English abstract).
      Zhou, L. H., Pu, X. G., Chen, C. W., et al., 2018. Concept, Characteristics and Prospecting Significance of Fine-Grained Sedimentary Oil Gas in Terrestrial Lake Basin: A Case from the Second Member of Paleogene Kongdian Formation of Cangdong Sag, Bohai Bay Basin. Earth Science, 43(10): 3625-3639 (in Chinese with English abstract).
      Zou, C. N., Yang, Z., Dong, D. Z., et al., 2022. Formation, Distribution and Prospect of Unconventional Hydrocarbons in Source Rock Strata in China. Earth Science, 47(5): 1517-1533 (in Chinese with English abstract).
      操应长, 张青青, 王艳忠, 等, 2017. 东营凹陷沙三中亚段三角洲前缘滑塌型重力流岩相类型及其分布特征. 沉积与特提斯地质, 37(1): 9-17. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD201701002.htm
      陈世悦, 张顺, 刘惠民, 等, 2017. 湖相深水细粒物质的混合沉积作用探讨. 古地理学报, 19(2): 271-284. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201702008.htm
      陈世悦, 张顺, 王永诗, 等, 2016. 渤海湾盆地东营凹陷古近系细粒沉积岩岩相类型及储集层特征. 石油勘探与开发, 43(2): 198-208. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201602006.htm
      邓宏文, 钱凯, 1990. 深湖相泥岩的成因类型和组合演化. 沉积学报, 8(3): 1-21. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB199003000.htm
      付金华, 邓秀芹, 楚美娟, 等, 2013. 鄂尔多斯盆地延长组深水岩相发育特征及其石油地质意义. 沉积学报, 31(5): 928-938. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201305018.htm
      郭旭升, 2022. 我国陆上未来油气勘探领域探讨与攻关方向. 地球科学, 47(10): 3511-3523. doi: 10.3799/dqkx.2022.873
      姜在兴, 梁超, 吴靖, 等, 2013. 含油气细粒沉积岩研究的几个问题. 石油学报, 34(6): 1031-1039. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201306001.htm
      姜在兴, 张文昭, 梁超, 等, 2014. 页岩油储层基本特征及评价要素. 石油学报, 35(1): 184-196. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201401027.htm
      梁超, 姜在兴, 杨镱婷, 等, 2012. 四川盆地五峰组‒龙马溪组页岩岩相及储集空间特征. 石油勘探与开发, 39(6): 691-698. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201206007.htm
      刘惠民, 王勇, 杨永红, 等, 2020. 东营凹陷细粒混积岩发育环境及其岩相组合: 以沙四上亚段泥页岩细粒沉积为例. 地球科学, 45(10): 3543-3555. doi: 10.3799/dqkx.2020.156
      刘早学, 许露露, 温雅茹, 等, 2022. 湖北寒武系牛蹄塘组页岩气成藏条件与综合评价. 地球科学, 47(5): 1586-1603. doi: 10.3799/dqkx.2021.214
      马文辛, 刘树根, 黄文明, 等, 2012. 四川盆地周缘筇竹寺组泥页岩储层特征. 成都理工大学学报(自然科学版), 39(2): 182-189. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201202012.htm
      宁方兴, 2015. 济阳坳陷页岩油富集机理. 特种油气藏, 22(3): 27-30, 152. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201503006.htm
      彭雪峰, 汪立今, 姜丽萍, 2012. 准噶尔盆地东南缘芦草沟组油页岩元素地球化学特征及沉积环境指示意义. 矿物岩石地球化学通报, 31(2): 121-127, 151. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201202004.htm
      宋明水, 2019. 济阳坳陷页岩油勘探实践与现状. 油气地质与采收率, 26(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901001.htm
      宋明水, 刘惠民, 王勇, 等, 2020. 济阳坳陷古近系页岩油富集规律认识与勘探实践. 石油勘探与开发, 47(2): 225-235. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202002003.htm
      滕建彬, 2018. 东营凹陷利页1井泥页岩中白云石成因及层序界面意义. 油气地质与采收率, 25(2): 1-7, 36. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201802001.htm
      王冠民, 2012. 济阳坳陷古近系页岩的纹层组合及成因分类. 吉林大学学报(地球科学版), 42(3): 666-671, 680. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201203010.htm
      王洪宝, 2009. 东营凹陷盐家油田砂砾岩体内幕沉积期次精细划分. 石油天然气学报, 31(5): 45-49, 430. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX200905012.htm
      王勇, 王学军, 宋国奇, 等, 2016. 渤海湾盆地济阳坳陷泥页岩岩相与页岩油富集关系. 石油勘探与开发, 43(5): 696-704. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201605005.htm
      王永诗, 王伟庆, 郝运轻, 2013. 济阳坳陷沾化凹陷罗家地区古近系沙河街组页岩储集特征分析. 古地理学报, 15(5): 657-662.
      武晓玲, 高波, 叶欣, 等, 2013. 中国东部断陷盆地页岩油成藏条件与勘探潜力. 石油与天然气地质, 34(4): 455-462. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201304007.htm
      杨万芹, 蒋有录, 王勇, 2015. 东营凹陷沙三下‒沙四上亚段泥页岩岩相沉积环境分析. 中国石油大学学报(自然科学版), 39(4): 19-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201504003.htm
      袁选俊, 林森虎, 刘群, 等, 2015. 湖盆细粒沉积特征与富有机质页岩分布模式——以鄂尔多斯盆地延长组长7油层组为例. 石油勘探与开发, 42(1): 34-43. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201501005.htm
      张顺, 陈世悦, 谭明友, 等, 2014. 东营凹陷西部沙河街组三段下亚段泥页岩沉积微相. 石油学报, 35(4): 633-645. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201404003.htm
      张顺, 刘惠民, 宋国奇, 等, 2016. 东营凹陷页岩油储集空间成因及控制因素. 石油学报, 37(12): 1495-1507, 1527. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201612005.htm
      张新荣, 方石, 胡克, 等, 2011. 敦化盆地晚全新世泥炭沉积中化学元素记录的古气候分析. 干旱区地理, 34(5): 726-732. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL201105004.htm
      周立宏, 蒲秀刚, 陈长伟, 等, 2018. 陆相湖盆细粒岩油气的概念、特征及勘探意义: 以渤海湾盆地沧东凹陷孔二段为例. 地球科学, 43(10): 3625-3639. doi: 10.3799/dqkx.2018.990
      邹才能, 杨智, 董大忠, 等, 2022. 非常规源岩层系油气形成分布与前景展望. 地球科学, 47(5): 1517-1533. doi: 10.3799/dqkx.2022.160
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(14)  / Tables(3)

      Article views (1698) PDF downloads(223) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return