Citation: | Yang Zongyao, Tang Juxing, Ren Dongxing, Deng An, Wang Ying, Wu Xin, 2024. Geochemical and Geophysical Exploration in Sinongduo Ag Polymetallic Deposit, Xizang. Earth Science, 49(3): 1081-1103. doi: 10.3799/dqkx.2022.195 |
Carlson, C. A., 1991. Spatial Distribution of Ore Deposits. Geology, 19(2): 111-114. https://doi.org/10.1130/0091-7613(1991)0190111:sdood>2.3.co;2 doi: 10.1130/0091-7613(1991)0190111:sdood>2.3.co;2
|
Cooke, D. R., Wilkinson, J. J., Baker, M., et al., 2020. Using Mineral Chemistry to Aid Exploration: A Case Study from the Resolution Porphyry CuMo Deposit, Arizona. Economic Geology, 115(4): 813-840. https://doi.org/10.5382/econgeo.4735
|
Han, M. H., Shin, S. W., Park, S., et al., 2016. Induced Polarization Imaging Applied to Exploration for LowSulfidation Epithermal AuAg Deposits, Seongsan Mineralized District, South Korea. Journal of Geophysics and Engineering, 13(5): 817-823. https://doi.org/10.1088/1742-2132/13/5/817
|
Han, Z. X., Liao, J. G., Zhang, Y. L., et al., 2017. Review of DeepPenetrating Geochemical Exploration Methods. Advances in Earth Science, 32(8): 828-838 (in Chinese with English abstract).
|
Holley, E. A., Bissig, T., Monecke, T., 2016. The Veladero HighSulfidation Epithermal Gold Deposit, El IndioPascua Belt, Argentina: Geochronology of Alunite and Jarosite. Economic Geology, 111(2): 311-330. https://doi.org/10.2113/econgeo.111.2.311
|
Hosseini, S. T., Asghari, O., Haroni, H. A., 2020. Multivariate Anomaly Modeling of Primary Geochemical Halos by USpatial Statistic Algorithm Development: A Case Study from the Sari Gunay Epithermal Gold Deposit, Iran. Ore Geology Reviews, 127: 103845. https://doi.org/10.1016/j.oregeorev.2020.103845
|
Huang, H. X., Liu, H., Li, G. M., et al., 2019. Zircon UPb, Molybdenite ReOs and Quartz Vein RbSr Geochronology of the Luobuzhen AuAg and Hongshan Cu Deposits, Tibet, China: Implications for the OligoceneMiocene PorphyryEpithermal Metallogenic System. Minerals, 9(8): 476. https://doi.org/10.3390/min9080476
|
Ishida, M., Romero, R., Leisen, M., et al., 2022. Auriferous Pyrite Formed by Episodic Fluid Inputs in the Akeshi and Kasuga HighSulfidation Deposits, Southern Kyushu, Japan. Mineralium Deposita, 57(1): 129-145. https://doi.org/10.1007/s00126-021-01053-4
|
Kapp, P., DeCelles, P. G., Leier, A. L., et al., 2007. The Gangdese Retroarc Thrust Belt Revealed. GSA Today, 17(7): 4-9. https://doi.org/10.1130/GSAT01707A.1
|
Krzywinski, M., Altman, N., 2014. Visualizing Samples with Box Plots. Nature Methods, 11(2): 119-120. https://doi.org/10.1038/nmeth.2813
|
Lang, X. H., Tang, J. X., Li, Z. J., et al., 2014. The Role of Geochemical Exploration in the Discovery of No. Ⅱ and No. Ⅲ Orebodies in the Xiongcun Ore District, Tibet. Geophysical and Geochemical Exploration, 38(4): 667-672 (in Chinese with English abstract).
|
Lang, X. H., Tang, J. X., Yang, Z. Y., et al., 2017. Geophysical Characteristics and Prospecting Direction of the Sinongduo PbZn Deposit in Xietongmen County, Tibet. Geology and Exploration, 53(3): 508-518 (in Chinese with English abstract).
|
Lu, M. X., 2015. Evaluation to the Effectiveness of IP Intermediate Gradient in Duolong Ore District, Tibet (Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract).
|
Ning, M. H., Wen, C. Q., 2010. Geological and Geophysical Characteristics and Analysis on Enlarging the Prospect for Prospecting Work of Tibetan Bangpu PorphyryType MolybdenumCopper Mine Area. Mineral Resources and Geology, 24(6): 542-546 (in Chinese with English abstract).
|
Oldenburg, D. W., Li, Y. G., Ellis, R. G., 1997. Inversion of Geophysical Data over a Copper Gold Porphyry Deposit: A Case History for Mt. Milligan. Geophysics, 62(5): 1419-1431. https://doi.org/10.1190/1.1444246
|
Sanderson, D. J., Roberts, S., Gumiel, P., 1994. A Fractal Relationship between Vein Thickness and Gold Grade in Drill Core from La Codosera, Spain. Economic Geology, 89(1): 168-173. https://doi.org/10.2113/gsecongeo.89.1.168
|
Sillitoe, R. H., Tolman, J., Van Kerkvoort, G., 2013. Geology of the Caspiche Porphyry GoldCopper Deposit, Maricunga Belt, Northern Chile. Economic Geology, 108(4): 585-604. https://doi.org/10.2113/econgeo.108.4.585
|
Tang, J. X., Deng, S. L., Zheng, W. B., et al., 2011. An Exploration Model for Jiama Copper Polymetallic Deposit in Maizhokunggar County, Tibet. Mineral Deposits, 30(2): 179-196 (in Chinese with English abstract).
|
Tang, J. X., Ding, S., Meng, Z., et al., 2016. The First Discovery of the Low Sulfidation Epithermal Deposit in Linzizong Volcanics, Tibet: A Case Study of the Sinongduo Ag Polymetallic Deposit. Acta Geoscientia Sinica, 37(4): 461-470 (in Chinese with English abstract).
|
Tang, J. X., Dorji, Liu, H. F., et al., 2012. Minerogenetic Series of Ore Deposits in the East Part of the Gangdise Metallogenic Belt. Acta Geoscientia Sinica, 33(4): 393-410 (in Chinese with English abstract).
|
Tang, J. X., Wang, Q., Yang, H. H., et al., 2017. Mineralization, Exploration and Resource Potential of PorphyrySkarnEpithermal Copper Polymetallic Deposits in Tibet. Acta Geoscientica Sinica, 38(5): 571-613 (in Chinese with English abstract).
|
Taylor, S. R., McLennan, S. M., 1995. The Geochemical Evolution of the Continental Crust. Reviews of Geophysics, 33(2): 241-265. https://doi.org/10.1029/95rg00262
|
Tian, W. F., Hao, J. J., Yan, J. Y., et al., 2010. Application of Synthetic Geophysical Methods to Deep Exploration of HanxingType Iron Deposit. Progress in Geophysiscs, 25(4): 1442-1452 (in Chinese with English abstract).
|
Wang, F. C., Li, Y. L., Lu, H. F., et al., 2016. GeophysicalGeochemical Anomaly Characteristics and Prospecting Model of the Narigongma Porphyry CuMo Deposit in Southern Qinghai Province. Geophysical and Geochemical Exploration, 40(6): 1055-1062 (in Chinese with English abstract).
|
Wang, J., Zuo, R. G., Caers, J., 2017. Discovering Geochemical Patterns by FactorBased Cluster Analysis. Journal of Geochemical Exploration, 181: 106-115. https://doi.org/10.1016/j.gexplo.2017.07.006
|
Wang, Q. F., Deng, J., Zhao, J. C., et al., 2012. The Fractal Relationship between Orebody Tonnage and Thickness. Journal of Geochemical Exploration, 122: 4-8. https://doi.org/10.1016/j.gexplo.2012.06.018
|
Wang, X. Q., Xie, X. J., Cheng, Z. Z., et al., 1999. Delineation of Regional Geochemical Anomalies Penetrating through Thick Cover in Concealed Terrains: A Case History from the Olympic Dam Deposit, Australia. Journal of Geochemical Exploration, 66(1): 85-97. https://doi.org/10.1016/S0375-6742(99)00036-9
|
Wang, X. Q., 2013. A Decade of Exploration Geochemistry. Bulletin of Mineralogy Petrology and Geochemistry, 32(2): 190-197 (in Chinese with English abstract).
|
Xie, X. J., Wang, X. Q., 2003. Recent Developments on Deep Penetrating Geochemistry. Earth Science Frontiers, 10(1): 225-238 (in Chinese with English abstract).
|
Yang, J., Liu, Z. P., Wang, L., 2008. Effectiveness of Natural Field Induced Polarization for Detecting Polymetallic Deposits. Earth Science Frontiers, 15(4): 217-221. https://doi.org/10.1016/S1872-5791(08)60056-1
|
Yang, S. P., Zhang, H., Kong, M., et al., 2014. Study on Surficial Soil Geochemistry in the HighElevation and Frigid Mountainous Region: A Case of Qulong Porphyry Copper Deposit in Tibet. Journal of Geochemical Exploration, 139: 144-151. https://doi.org/10.1016/j.gexplo.2013.06.001
|
Yang, X., Tang, J. X., Yang, Z. Y., et al., 2021. Late Cretaceous Adakite in Sinongduo Area, Tibet: Implications for Petrogenesis and Mineralization. Earth Science, 46(5): 1597-1612 (in Chinese with English abstract).
|
Yang, Z. Y., Tang, J. X., Santosh, M., et al., 2021. Microcontinent Subduction and SType Volcanism Prior to IndiaAsia Collision. Scientific Reports, 11: 14882. https://doi.org/10.1038/s41598-021-94492-y
|
Yang, Z. Y., Tang, J. X., Zhao, X. Y., et al., 2022. Direct Dating of the Sinongduo Thrust System in Southern Tibet: Immediate Response to IndiaAsia Collision. International Geology Review, 64(14): 2074-2084. https://doi.org/10.1080/00206814.2021.1978110
|
Yang, Z., 2017. Geological Characteristics and Prospecting Prediction of Gangjiang Porphyry CuMo Deposit in Nimu, Tibet (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
|
Yang, Z. Y., Tang, J. X., Zhang, L. J., et al., 2020a. Geological and Geochemical Characteristics of Lithocaps in Sinongduo Area, Tibet: Implications for the Mineralization in Linzizong Group Volcanic Rocks. Earth Science, 45(3): 789-803 (in Chinese with English abstract).
|
Yang, Z. Y., Zhang, C. H., Zhang, L. J., et al., 2020b. The Application of Induced Polarization Method and Audio Magnetotelluric Sounding to the Exploration of the Sinongduo Deposit, Tibet. Acta Geoscientica Sinica, 41(1): 107-116 (in Chinese with English abstract).
|
Yang, Z. Y., Zhang, C. H., Zhao, X. Y., et al., 2019. Characteristics of Rock Geochemical Anomalies and Prospecting Potential of the Sinongduo Silver Polymetallic Deposit, Tibet. Geophysical and Geochemical Exploration, 43(4): 702-708 (in Chinese with English abstract).
|
Zheng, S. L., 2020. Construction and Application of Exploration Indicator of Zhunuo Porphyry Copper Deposit (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
|
Zhou, W. Y., Yan, J. Y., Chen, C. X., 2021. Multiscale Geophysics and Mineral System Detection: Status and Progress. Progress in Geophysics, 36(3): 1208-1225 (in Chinese with English abstract).
|
Zhu, W. P., Liu, S. H., Zhu, H. W., et al., 2017. Study on the Exploration Depth of Geophysical Methods Commonly Used. Progress in Geophysiscs, 32(6): 2608-2618 (in Chinese with English abstract).
|
韩志轩, 廖建国, 张聿隆, 等, 2017. 穿透性地球化学勘查技术综述与展望. 地球科学进展, 32(8): 828-838. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201708006.htm
|
郎兴海, 唐菊兴, 李志军, 等, 2014. 化探在西藏雄村矿区Ⅱ、Ⅲ号矿体发现中的作用. 物探与化探, 38(4): 667-672. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201404007.htm
|
郎兴海, 唐菊兴, 杨宗耀, 等, 2017. 西藏自治区谢通门县斯弄多铅锌矿区地球物理特征及找矿方向. 地质与勘探, 53(3): 508-518. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201703010.htm
|
陆茂欣, 2015. 西藏多龙矿集区激电中梯方法有效性评价(硕士学位论文). 成都: 成都理工大学.
|
宁墨奂, 温春齐, 2010. 西藏邦铺斑岩型钼铜矿区地质及地球物理特征与扩大找矿前景分析. 矿产与地质, 24(6): 542-546. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD201006012.htm
|
唐菊兴, 邓世林, 郑文宝, 等, 2011. 西藏墨竹工卡县甲玛铜多金属矿床勘查模型. 矿床地质, 30(2): 179-196. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201102003.htm
|
唐菊兴, 丁帅, 孟展, 等, 2016. 西藏林子宗群火山岩中首次发现低硫化型浅成低温热液型矿床——以斯弄多银多金属矿为例. 地球学报, 37(4): 461-470. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201604010.htm
|
唐菊兴, 多吉, 刘鸿飞, 等, 2012. 冈底斯成矿带东段矿床成矿系列及找矿突破的关键问题研究. 地球学报, 33(4): 393-410. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201204003.htm
|
唐菊兴, 王勤, 杨欢欢, 等, 2017. 西藏斑岩‒矽卡岩‒浅成低温热液铜多金属矿成矿作用、勘查方向与资源潜力. 地球学报, 38(5): 571-613. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201705002.htm
|
田文法, 郝俊杰, 严加永, 等, 2010. 综合地球物理方法在邯邢式铁矿深部找矿中的应用. 地球物理学进展, 25(4): 1442-1452. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201004037.htm
|
王富春, 李玉龙, 鲁海峰, 等, 2016. 青南纳日贡玛斑岩型铜钼矿床物化探异常特征及找矿模型. 物探与化探, 40(6): 1055-1062. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201606001.htm
|
王学求, 2013. 勘查地球化学近十年进展. 矿物岩石地球化学通报, 32(2): 190-197. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201302004.htm
|
谢学锦, 王学求, 2003. 深穿透地球化学新进展. 地学前缘, 10(1): 225-238. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200301041.htm
|
杨昕, 唐菊兴, 杨宗耀, 等, 2021. 西藏斯弄多地区晚白垩世埃达克岩: 岩石成因及成矿潜力指示. 地球科学, 46(5): 1597-1612. doi: 10.3799/dqkx.2020.157
|
杨震, 2017. 西藏尼木岗讲斑岩铜钼矿床地质特征及成矿预测(博士学位论文). 北京: 中国地质大学.
|
杨宗耀, 唐菊兴, 张乐骏, 等, 2020a. 西藏斯弄多地区岩帽地质地球化学特征: 林子宗群火山岩中成矿的指示. 地球科学, 45(3): 789-803. doi: 10.3799/dqkx.2019.044
|
杨宗耀, 张崇海, 张乐骏, 等, 2020b. 激发极化法和音频大地电磁测深在西藏斯弄多矿区找矿中的应用. 地球学报, 41(1): 107-116. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB202001011.htm
|
杨宗耀, 张崇海, 赵晓彦, 等, 2019. 西藏斯弄多银多金属矿床岩石地球化学特征及找矿前景. 物探与化探, 43(4): 702-708. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201904003.htm
|
郑顺利, 2020. 朱诺斑岩铜矿勘查标识的构建及其应用(硕士学位论文). 北京: 中国地质大学.
|
周文月, 严加永, 陈昌昕, 2021. 多尺度地球物理与成矿系统探测: 现状与进展. 地球物理学进展, 36(3): 1208-1225. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202103037.htm
|
朱卫平, 刘诗华, 朱宏伟, 等, 2017. 常用地球物理方法勘探深度研究. 地球物理学进展, 32(6): 2608-2618. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201706043.htm
|