• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 8
    Sep.  2022
    Turn off MathJax
    Article Contents
    Zhou Xiaohang, Chen Dongxia, Xia Yuxuan, Zeng Jianhui, Qiao Juncheng, Xu Xuan, Cai Jianchao, 2022. Spontaneous Imbibition Characteristics and Influencing Factors of Chang 7 Shale Oil Reservoirs in Longdong Area, Ordos Basin. Earth Science, 47(8): 3045-3055. doi: 10.3799/dqkx.2022.208
    Citation: Zhou Xiaohang, Chen Dongxia, Xia Yuxuan, Zeng Jianhui, Qiao Juncheng, Xu Xuan, Cai Jianchao, 2022. Spontaneous Imbibition Characteristics and Influencing Factors of Chang 7 Shale Oil Reservoirs in Longdong Area, Ordos Basin. Earth Science, 47(8): 3045-3055. doi: 10.3799/dqkx.2022.208

    Spontaneous Imbibition Characteristics and Influencing Factors of Chang 7 Shale Oil Reservoirs in Longdong Area, Ordos Basin

    doi: 10.3799/dqkx.2022.208
    • Received Date: 2022-03-28
    • Publish Date: 2022-09-25
    • Spontaneous imbibition exists in many key stages such as volume fracturing and water injection development in shale reservoirs, which is one of the important factors affecting shale oil productivity. Clarifying the characteristics of imbibition and influencing factors is of great significance to improve the recovery of shale oil. In this paper, spontaneous imbibition experiments were carried out on shale oil reservoirs samples with different source⁃reservoir configuration relationships in Chang 7 member of Ordos Basin. Combined with NMR technology, fluid migration process was monitored, and the influence mechanism of reservoir physical properties and pore structure on spontaneous imbibition of shale oil reservoirs was analyzed, so as to clarify the control effect of source⁃reservoir configuration relationship on imbibition. The average volume fraction of source-type imbibition in Chang 7 member is 33.84 %, and the source-reservoir interbed type is 25.98 %. The average slope of the source⁃type suction stage is 0.359, and the average of the source⁃reservoir interlayer type is 0.302. The proportion of pores with NMR transverse relaxation time less than 10 ms in the imbibition process is high; imbibition volume fraction has good correlation with wettability, reservoir quality factor and pore throat ratio. The permeability of source⁃source configuration relationship of Chang 7 shale oil reservoir is better than that of source⁃reservoir interbed; reservoir imbibition capacity is mainly controlled by wettability, reservoir quality factor and pore throat ratio.

       

    • loading
    • Amaefule, J.O., Altunbay, M., Tiab, D., et al., 1993. Enhanced Reservoir Description: Using Core and Log Data to Identify Hydraulic (Flow) Units and Predict Permeability in Uncored Intervals/Wells. SPE Annual Technical Conference and Exhibition. Texas. https://doi.org/10.2118/26436-MS
      Austad, T., Standnes, D. C., 2003. Spontaneous Imbibition of Water into Oil-Wet Carbonates. Journal of Petroleum Science and Engineering, 39(3/4): 363-376. https://doi.org/10.1016/s0920-4105(03)00075-5
      Blunt, M. J., Bijeljic, B., Dong, H., et al., 2013. Pore-Scale Imaging and Modelling. Advances in Water Resources, 51(2-3): 197-216. https://doi.org/10.1016/j.advwatres.2012.03.003
      Cai, J.C., 2021. Some Key Issues and Thoughts on Spontaneous Imbibition in Porous Media. Chinese Journal of Computational Physics, 38(5): 505-512(in Chinese with English abstract).
      Cai, J.C., Perfect, E., Cheng, C.L., et al., 2014. Generalized Modeling of Spontaneous Imbibition Based on Hagen-Poiseuille Flow in Tortuous Capillaries with Variably Shaped Apertures. Langmuir, 30(18): 5142-5151. https://doi.org/10.1021/la5007204
      Dang, H.L., Wang, X.F., Cui, P.X., et al., 2020. Research on the Characteristics of Spontaneous Imbibition Oil Displacement with the Low Permeability Tight-Sandstone Oil Reservoir Using the Nuclear Magnetic Resonance (NMR) Technology. Progress in Geophysics, 35(5): 1759-1769(in Chinese with English abstract).
      Diao, Z. H., Li, S., Liu, W., et al., 2021. Numerical Study of the Effect of Tortuosity and Mixed Wettability on Spontaneous Imbibition in Heterogeneous Porous Media. Capillarity, 4(3): 50-62. https://doi.org/10.46690/capi.2021.03.02
      Dong, D.P., Li, B.H., Yuan, S.W., et al., 2021. Spontaneous Imbibition Characteristics of the Low-Permeability Water-Wet Core Based on the NMR Test. Petroleum Geology & Oilfield Development in Daqing, 40(2): 60-65(in Chinese with English abstract).
      Fu, J. H., Li, S. X., Niu, X. B., et al., 2020. Geological Characteristics and Exploration of Shale Oil in Chang 7 Member of Triassic Yanchang Formation, Ordos Basin, NW China. Petroleum Exploration and Development, 47(5): 931-945. https://doi.org/10.1016/s1876-3804(20)60107-0
      Gao, Z. Y., Fan, Y. P., Xuan, Q. X., et al., 2020. A Review of Shale Pore Structure Evolution Characteristics with Increasing Thermal Maturities. Advances in Geo-Energy Research, 4(3): 247-259. https://doi.org/10.46690/ager.2020.03.03
      Gu, X. Y., Pu, C. S., Huang, H., et al., 2017. Micro-Influencing Mechanism of Permeability on Spontaneous Imbibition Recovery for Tight Sandstone Reservoirs. Petroleum Exploration and Development, 44(6): 1003-1009. https://doi.org/10.1016/s1876-3804(17)30112-x
      Guo, J. C., Li, M., Chen, C., et al., 2020. Experimental Investigation of Spontaneous Imbibition in Tight Sandstone Reservoirs. Journal of Petroleum Science and Engineering, 193(3): 107395. https://doi.org/10.1016/j.petrol.2020.107395
      Hu, Q. H., Ewing, R. P., Dultz, S., 2012. Low Pore Connectivity in Natural Rock. Journal of Contaminant Hydrology, 133(B10): 76-83. https://doi.org/10.1016/j.jconhyd.2012.03.006
      Huang, R.Z., Jiang, Z.X., Gao, Z.Y., et al., 2017. Effect of Composition and Structural Characteristics on Spontaneous Imbibition of Shale Reservoir. Petroleum Geology and Recovery Efficiency, 24(1): 111-115(in Chinese with English abstract).
      Jia, C. Z., Zheng, M., Zhang, Y. F., 2012. Unconventional Hydrocarbon Resources in China and the Prospect of Exploration and Development. Petroleum Exploration and Development, 39(2): 139-146. https://doi.org/10.1016/s1876-3804(12)60026-3
      Li, C.S., Zhang, W.S., Lei, Y., 2021. Characteristics and Controlling Factors of Oil Accumulation in Chang 9 Member in Longdong Area, Ordos Basin. Earth Science, 46(10): 3560-3574(in Chinese with English abstract).
      Li, C. X., Singh, H., Cai, J. C., 2019. Spontaneous Imbibition in Shale: A Review of Recent Advances. Capillarity, 2(2): 17-32. https://doi.org/10.26804/capi.2019.02.01
      Liu, H. L., Yang, Y. Y., Wang, F. Q., et al., 2018. Micro Pore and Throat Characteristics and Origin of Tight Sandstone Reservoirs: A Case Study of the Triassic Chang 6 and Chang 8 Members in Longdong Area, Ordos Basin, NW China. Petroleum Exploration and Development, 45(2): 239-250. https://doi.org/10.1016/s1876-3804(18)30027-2
      Lyu, C., Ning, Z. F., Chen, M. Q., et al., 2019. Experimental Study of Boundary Condition Effects on Spontaneous Imbibition in Tight Sandstones. Fuel, 235(4): 374-383. https://doi.org/10.1016/j.fuel.2018.07.119
      Shen, Y. H., Ge, H. K., Li, C. X., et al., 2016. Water Imbibition of Shale and its Potential Influence on Shale Gas Recovery: a Comparative Study of Marine and Continental Shale Formations. Journal of Natural Gas Science and Engineering, 35(3): 1121-1128. https://doi.org/10.1016/j.jngse.2016.09.053
      Umeobi, H. I., Li, Q., Xu, L., et al., 2021. NMR Investigation of Brine Imbibition Dynamics in Pores of Tight Sandstones under Different Boundary Conditions. Energy & Fuels, 35(19): 15856-15866. https://doi.org/10.1021/acs.energyfuels.1c01417
      Wang, F.W., Chen, D.X., Xie, G. j., et al., 2022. Differential Enrichment Mechanism of Tight Sandstone Oil under the Control of the Source-Rreservoir Structures of Member 7 of Yanchang Formation in Qingcheng Area, Ordos Basin. Acta Pctrolei Sinica, 43(7): 941-956, 976(in Chinese with English abstract).
      Wang, X. J., Wang, M., Li, Y., et al., 2021. Shale Pore Connectivity and Influencing Factors Based on Spontaneous Imbibition Combined with a Nuclear Magnetic Resonance Experiment. Marine and Petroleum Geology, 132: 105239. https://doi.org/10.1016/j.marpetgeo.2021.105239
      Wu, Z.Y., Gao, Z.W., Ma, S.W., et al., 2021. Preliminary Study on Imbibition and Oil Displacement of Chang 7 Shale Oil in Ordos Basin. Natural Gas Geoscience, 32(2): 1874-1879(in Chinese with English abstract).
      Xia, Y. X., Tian, Z. H., Xu, S., et al., 2021. Effects of Microstructural and Petrophysical Properties on Spontaneous Imbibition in Tight Sandstone Reservoirs. Journal of Natural Gas Science and Engineering, 96: 104225. https://doi.org/10.1016/j.jngse.2021.104225
      Xu, X.Y., Wang, W.T., 2020. The Recognition of Potential Fault Zone in Ordos Basin and Its Reservoir Control. Earth Science, 45(5): 1754-1768(in Chinese with English abstract).
      Yang, L., Ge, H. K., Shi, X., et al., 2016. The Effect of Microstructure and Rock Mineralogy on Water Imbibition Characteristics in Tight Reservoirs. Journal of Natural Gas Science and Engineering, 34(2): 1461-1471. https://doi.org/10.1016/j.jngse.2016.01.002
      Yang, Z.F., Zeng, J.H., Feng, X., et al., 2015. Effects of Source-Reservoir Lithologic Assemblage on Tight Oil Accumulation: A Case Study of Yanchang Chang-7 Member in Ordos Basin. Xinjiang Petroleum Geology, 36(4): 383-393(in Chinese with English abstract).
      Yao, J.L., Zeng J.H., Luo, A.X., et al., 2019. Controlling Effect of Source-Reservoir Structure in Tight Reservoir on Oil-Bearing Property: A Case Study of Chang-6~Chang-8 Members in Heshui Area of Ordos Basin, China. Journal of Earth Sciences & Environment, 41(3): 267-280(in Chinese with English abstract).
      You, Y., Niu, X.B., Feng, S.B., et al., 2014. Study of pore features in Chang7 Tight Oil Reservoir, Yanchang Layer, Ordos Basin. Journal of China University of Petroleum (Edition of Natural Science), 38(6): 18-23(in Chinese with English abstract).
      Yu, R.A., Zhu, Q., Wen, S.B., et al., 2020. Tectonic Setting and Provenance Analysis of Zhiluo Formation and Stone of Tarangaole Area in the Ordos Basin. Earth Science, 45(5): 1754-1768(in Chinese with English abstract).
      蔡建超, 2021. 多孔介质自发渗吸关键问题与思考. 计算物理, 38(5): 505-512. https://www.cnki.com.cn/Article/CJFDTOTAL-JSWL202105001.htm
      党海龙, 王小锋, 崔鹏兴, 等, 2020. 基于核磁共振技术的低渗透致密砂岩油藏渗吸驱油特征研究. 地球物理学进展, 35(5): 1759-1769. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202005016.htm
      董大鹏, 李斌会, 苑盛旺, 等, 2021. 基于核磁共振测试的低渗亲水岩心静态渗吸特征. 大庆石油地质与开发, 40(2): 60-65. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK202102007.htm
      黄睿哲, 姜振学, 高之业, 等, 2017. 页岩储层组构特征对自发渗吸的影响. 油气地质与采收率, 24(1): 111-115. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201701019.htm
      李程善, 张文选, 雷宇, 等, 2021. 鄂尔多斯盆地陇东地区长9油层组砂体成因与油气差异分布. 地球科学, 46(10): 3560-3574. doi: 10.3799/dqkx.2021.007
      王福伟, 陈冬霞, 解广杰, 等. 2022. 鄂尔多斯盆地庆城地区延长组7段源-储结构控制下致密砂岩油的差异富集机制. 石油学报, 43(7): 941-956, 976. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202207005.htm
      吴志宇, 高占武, 麻书玮, 等, 2021. 鄂尔多斯盆地长7段页岩油渗吸驱油现象初探. 天然气地球科学, 32(12): 1874-1879. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202112013.htm
      徐兴雨, 王伟锋, 2020. 鄂尔多斯盆地隐性断裂识别及其控藏作用. 地球科学, 45(5): 1754-1768 doi: 10.3799/dqkx.2019.175
      杨智峰, 曾溅辉, 冯枭, 等, 2015. 源储岩性组合对致密油聚集的影响——以鄂尔多斯盆地延长组长7段为例. 新疆石油地质, 36(4): 383-393. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201504004.htm
      姚泾利, 曾溅辉, 罗安湘, 等, 2019. 致密储层源储结构对储层含油性的控制作用——以鄂尔多斯盆地合水地区长6~长8段为例. 地球科学与环境学报, 41(3): 267-280. doi: 10.3969/j.issn.1672-6561.2019.03.002
      尤源, 牛小兵, 冯胜斌, 等, 2014. 延长组页岩油储层微观孔隙特征研究. 中国石油大学学报(自然科学版), 38(6): 18-23. doi: 10.3969/j.issn.1673-5005.2014.06.003
      俞礽安, 朱强, 文思博, 等, 2020. 鄂尔多斯盆地塔然高勒地区直罗组砂岩源区构造背景与物源分析. 地球科学, 45(3): 829-843. doi: 10.3799/dqkx.2020.001
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(5)

      Article views (1767) PDF downloads(108) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return