• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 5
    May  2024
    Turn off MathJax
    Article Contents
    Wang Qingbin, Zang Chunyan, Wan Lin, Pan Wenjing, Liu Xiaojian, Li Xinqi, Zhou Lin, 2024. Formation Mechanism and Influencing Factors of Micro-Fractures in Tight Glutenite of Kongdian Formation in Bozhong Sag. Earth Science, 49(5): 1821-1831. doi: 10.3799/dqkx.2022.210
    Citation: Wang Qingbin, Zang Chunyan, Wan Lin, Pan Wenjing, Liu Xiaojian, Li Xinqi, Zhou Lin, 2024. Formation Mechanism and Influencing Factors of Micro-Fractures in Tight Glutenite of Kongdian Formation in Bozhong Sag. Earth Science, 49(5): 1821-1831. doi: 10.3799/dqkx.2022.210

    Formation Mechanism and Influencing Factors of Micro-Fractures in Tight Glutenite of Kongdian Formation in Bozhong Sag

    doi: 10.3799/dqkx.2022.210
    • Received Date: 2022-04-10
      Available Online: 2024-06-04
    • Publish Date: 2024-05-25
    • Many deep wells in the southwestern part of the Bozhong sag reveal thick glutenite of Kongdian Formation. Due to the large burial depth, the glutenite reservoir is obviously densified, and the production of some wells is less than 10 m3/d. A part of wells have high productivity, and the differential evolution mechanism of reservoirs is a key issue that restricts exploration. Aiming at the differential evolution mechanism of the reservoir, this study carried out experiments such as thin section, scanning electron microscope, compaction simulation. It is found that the degree of development of micro-fractures determines the physical properties of reservoirs. And the differential evolution of the reservoir is significantly affected by the composition of gravel and the content of matrix. The glutenite whose parent rock comes from granite, with low matrix content, develops potash feldspar fractures, strong dissolution, and good reservoir properties. The glutenite with high matrix is characterized by underdeveloped fractures, weak dissolution, and low productivity. The glutenite mixed with a large amount of carbonate gravel has strong cementation in the early stage, and the productivity is still poor even after fracturing. The physical compaction simulation shows that intragranular fractures appear in the gravel below simulation burial depth 2 500 meters, which increase with the increase of simulation burial depth; the types and characteristics of fractures can be compared with the characteristics of micro-fractures in the study area. This confirms that glutenite with low matrix content can generate a large number of compaction fractures. Potassium feldspar and plagioclase are quite different in their ability to form fractures: potash feldspar is more prone to form fractures, and which is further corroded by later fluids, forming dissolution enlarged fractures. Plagioclase is prone to kaolinization, sodium zoisite and other secondary transformations, which changes the mechanical properties of minerals, and is not prone to form fractures.

       

    • loading
    • Cao, Y. C., Ma, B. B., Wang, Y. Z., et al., 2013. Genetic Mechanisms and Classified Evaluation of Low Permeability Reservoirs of Es4s in the North Zone of Bonan Sag. Natural Gas Geoscience, 24(5): 865-878 (in Chinese with English abstract).
      Ding, Y. C., Shao, Z. G., 2001. An Experimental Research into Determination of Highest Paleotectonic Stress State Experienced by Rock through Geological Ages. Earth Science, 26(1): 99-104 (in Chinese with English abstract).
      Ding, Y. C., Sun, B. S., Wang, X. H., et al., 1997. Present Stress State Determined by AE in the Northern Tarim Oil Field. Earth Science, 22(2): 101-104 (in Chinese with English abstract).
      Feng, J. R., Gao, Z. Y., Cui, J. G., et al., 2018. Reservoir Porosity Evolution Characteristics and Evaluation of the Jurassic Deep Reservoir from Dibei in Kuqa Depression: Insight from Diagenesis Modeling Experiments under the Influence of Burial Mode. Advances in Earth Science, 33(3): 305-320 (in Chinese with English abstract).
      Gallagher, J. J. Jr., Friedman, M., Handin, J., et al., 1974. Experimental Studies Relating to Microfracture in Sandstone. Tectonophysics, 21(3): 203-247. https://doi.org/10.1016/0040-1951(74)90053-5
      Gao, Z. Y., Cui, J. G., Feng, J. R., et al., 2013. An Effect of Burial Compaction on Deep Reservoirs of Foreland Basins and Its Reworking Mechanism. Acta Petrolei Sinica, 34(5): 867-876 (in Chinese with English abstract).
      Huang, S. J., Huang, K. K., Feng, W. L., et al., 2009. Mass Exchanges among Feldspar, Kaolinite and Illite and Their Influen Ces on Secondary Porosity Formation in Clastic Diagenesis—A Case Study on the Upper Paleozoic, Ordos Basin and Xujiahe Formation, Western Sichuan Depression. Geochimica, 38(5): 498-506 (in Chinese with English abstract). doi: 10.3321/j.issn:0379-1726.2009.05.009
      Mao, Z., Zeng, L. B., Liu, G. P., et al., 2020. Characterization and Effectiveness of Natural Fractures in Deep Tight Sandstones at the South Margin of the Junggar Basin, Northwestern China. Oil & Gas Geology, 41(6): 1212-1221 (in Chinese with English abstract).
      Shi, H. S., Wang, Q. B., Wang, J., et al., 2019. Discovery and Exploration Significance of Large Condensate Gas Fields in BZ19-6 Structure in Deep Bozhong Sag. China Petroleum Exploration, 24(1): 36-45 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2019.01.005
      Wang, K., Zhang, H. L., Zhang, R. H., et al., 2016. Characteristics and Influencing Factors of Ultra-Deep Tight Sandstone Reservoir Structural Fracture: A Case Study of Keshen-2 Gas Field, Tarim Basin. Acta Petrolei Sinica, 37(6): 715-727, 742 (in Chinese with English abstract).
      Wang, Q. B., Niu, C. M., Liu, X. J., et al., 2019. Hydrocarbon Charging and Reservoir Densification of the Deep-Seated Glutenite Gas Reservoirs in the Bozhong Sag. Natural Gas Industry, 39(5): 25-33 (in Chinese with English abstract).
      Wang, Q. B., Niu, C. M., Pan, W. J., et al., 2020. Impacts of Basement Lithology on Reservoir of Lacustrine Carbonate and Clastic Mixed-Deposition in Member 1 of Shahejie Formation, Bohai Sea Area. Earth Science, 45(10): 3556-3566 (in Chinese with English abstract).
      Wang, Q. B., Zang, C. Y., Lai, W. C., et al., 2009. Distribution Characteristics and Origin of Carbonate Cements in the Middle and Deep Clastic Reservoirs of the Paleogene in the Bozhong Depression. Oil & Gas Geology, 30(4): 438-443 (in Chinese with English abstract). doi: 10.3321/j.issn:0253-9985.2009.04.008
      Wang, S. P., Wang, Z. K., Cao, Y. C., et al., 2019. Controlling Factors and Evaluation of the Medium-Deep Glutenite Reservoirs: An Example from the Lower Part of the Fourth Member of the Paleogene Shahejie Formation in the Yong 1 Block, Dongying Sag. Acta Sedimentologica Sinica, 37(5): 1069-1078 (in Chinese with English abstract).
      Xia, Q. L., Zhou, X. H., Li, J. P., et al., 2012. The Sedimentary Evolution and Distribution of Paleogene Sequence in the Bohai Sea Area. Petroleum Industry Press, Beijing (in Chinese with English abstract).
      Xu, C. G., Yu, H. B., Wang, J., et al., 2019. Formation Conditions and Accumulation Characteristics of Bozhong 19-6 Large Condensate Gas Field in Offshore Bohai Bay Basin. Petroleum Exploration and Development, 46(1): 25-38 (in Chinese with English abstract).
      Xue, Y. A., 2020. Formation and Exploration of Large Natural Gas Reservoirs in Continental Lacustrine Basin of Bohai Bay. Science Press, Beijing (in Chinese with English abstract).
      Xue, Y. A., Wang, D. Y., 2020. Formation Conditions and Exploration Direction of Large Natural Gas Reservoirs in the Oil-Prone Bohai Bay Basin, East China. Petroleum Exploration and Development, 47(2): 260-271 (in Chinese with English abstract).
      Zeng, D. G., Li, S. Z., 1994. Types and Characteristics of Low Permeability Sandstone Reservoirs in China. Acta Petrolei Sinica, 15(1) : 38-45 (in Chinese with English abstract). doi: 10.3321/j.issn:0253-2697.1994.01.014
      Zeng, L. B., Li, Y. G., Wang, Z. G., et al., 2007. Type and Sequence of Fractures in the Second Member of Xujiahe Formation at the South of Western Sichuan Depression. Earth Science, 32(2): 194-200 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-2383.2007.02.006
      Zeng, L. B., Li, Z. X., Shi, C. W., et al., 2007. Characteristics and Origin of Fractures in the Extra Low-Permeability Sandstone Reservoirs of the Upper Triassic Yanchang Formation in the Ordos Basin. Acta Geologica Sinica, 81(2): 174-180 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2007.02.005
      Zhu, W. L., 2009. Paleolimnology and Source Rock Studies of Cenozoic Hydrocarbon-Bearing Offshore Basins in China. Geological Publishing House, Beijing (in Chinese with English abstract).
      Zhu, W. L., Mi, L. J., Gong, Z. S., 2009. Oil and Gas Accumulation and Exploration in Bohai Sea Area. Science Press, Beijing (in Chinese with English abstract).
      操应长, 马奔奔, 王艳忠, 等, 2013. 渤南洼陷北带沙四上亚段储层低渗成因机制及分类评价. 天然气地球科学, 24(5): 865-878. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201305001.htm
      丁原辰, 邵兆刚, 2001. 测定岩石经历的最高古应力状态实验研究. 地球科学, 26(1): 99-104. doi: 10.3321/j.issn:1000-2383.2001.01.017
      丁原辰, 孙宝珊, 汪西海, 等, 1997. 塔北油田现今地应力的AE法测量. 地球科学, 22(2): 101-104. http://www.earth-science.net/article/id/476
      冯佳睿, 高志勇, 崔京钢, 等, 2018. 库车坳陷迪北侏罗系深部储层孔隙演化特征与有利储层评价: 埋藏方式制约下的成岩物理模拟实验研究. 地球科学进展, 33(3): 305-320. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201803011.htm
      高志勇, 崔京钢, 冯佳睿, 等, 2013. 埋藏压实作用对前陆盆地深部储层的作用过程与改造机制. 石油学报, 34(5): 867-876. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201305007.htm
      黄思静, 黄可可, 冯文立, 等, 2009. 成岩过程中长石、高岭石、伊利石之间的物质交换与次生孔隙的形成: 来自鄂尔多斯盆地上古生界和川西凹陷三叠系须家河组的研究. 地球化学, 38(5): 498-506. doi: 10.3321/j.issn:0379-1726.2009.05.009
      毛哲, 曾联波, 刘国平, 等, 2020. 准噶尔盆地南缘侏罗系深层致密砂岩储层裂缝及其有效性. 石油与天然气地质, 41(6): 1212-1221. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202006011.htm
      施和生, 王清斌, 王军, 等, 2019. 渤中凹陷深层渤中19-6构造大型凝析气田的发现及勘探意义. 中国石油勘探, 24(1): 36-45. doi: 10.3969/j.issn.1672-7703.2019.01.005
      王珂, 张惠良, 张荣虎, 等, 2016. 超深层致密砂岩储层构造裂缝特征及影响因素: 以塔里木盆地克深2气田为例. 石油学报, 37(6): 715-727, 742. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201606003.htm
      王清斌, 牛成民, 刘晓健, 等, 2019. 渤中凹陷深层砂砾岩气藏油气充注与储层致密化. 天然气工业, 39(5): 25-33. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201905003.htm
      王清斌, 牛成民, 潘文静, 等, 2020. 渤海海域沙一段基底岩性条件对湖相混积岩储层的控制作用. 地球科学, 45(10): 3556-3566. doi: 10.3799/dqkx.2020.256
      王清斌, 臧春艳, 赖维成, 等, 2009. 渤中坳陷古近系中、深部碎屑岩储层碳酸盐胶结物分布特征及成因机制. 石油与天然气地质, 30(4): 438-443. doi: 10.3321/j.issn:0253-9985.2009.04.008
      王淑萍, 王铸坤, 操应长, 等, 2019. 中深层砂砾岩储层控制因素与分类评价方法——以东营凹陷永1块沙四下亚段为例. 沉积学报, 37(5): 1069-1078. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201905016.htm
      夏庆龙, 周心怀, 李建平, 等, 2012. 渤海海域古近系层序沉积演化及储层分布规律. 北京: 石油工业出版社.
      徐长贵, 于海波, 王军, 等, 2019. 渤海海域渤中19-6大型凝析气田形成条件与成藏特征. 石油勘探与开发, 46(1): 25-38. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201901003.htm
      薛永安, 2020. 渤海湾陆相湖盆大型天然气藏形成与勘探. 北京: 科学出版社.
      薛永安, 王德英, 2020. 渤海湾油型湖盆大型天然气藏形成条件与勘探方向. 石油勘探与开发, 47(2): 260-271. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202002007.htm
      曾大乾, 李淑贞, 1994. 中国低渗透砂岩储层类型及地质特征. 石油学报, 15(1): 38-45. doi: 10.3321/j.issn:0253-2697.1994.01.014
      曾联波, 李跃纲, 王正国, 等, 2007a. 川西南部须二段低渗透砂岩储层裂缝类型及其形成序列. 地球科学, 32(2): 194-200. http://www.earth-science.net/article/id/3439
      曾联波, 李忠兴, 史成恩, 等, 2007b. 鄂尔多斯盆地上三叠统延长组特低渗透砂岩储层裂缝特征及成因. 地质学报, 81(2): 174-180. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200702005.htm
      朱伟林, 2009. 中国近海新生代含油气盆地古湖泊学与烃源条件. 北京: 地质出版社.
      朱伟林, 米立军, 龚再升, 等, 2009. 渤海海域油气成藏与勘探. 北京: 科学出版社.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(12)  / Tables(2)

      Article views (469) PDF downloads(62) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return