• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 3
    Mar.  2024
    Turn off MathJax
    Article Contents
    Hu Dingkun, Li Qian, Lü Jiahang, Zou Xinyue, Luo Haotian, 2024. Penetration Modular Test Based on Lunar Soil Simulant. Earth Science, 49(3): 1052-1065. doi: 10.3799/dqkx.2022.230
    Citation: Hu Dingkun, Li Qian, Lü Jiahang, Zou Xinyue, Luo Haotian, 2024. Penetration Modular Test Based on Lunar Soil Simulant. Earth Science, 49(3): 1052-1065. doi: 10.3799/dqkx.2022.230

    Penetration Modular Test Based on Lunar Soil Simulant

    doi: 10.3799/dqkx.2022.230
    • Received Date: 2022-03-20
      Available Online: 2024-04-12
    • Publish Date: 2024-03-25
    • To understand the interaction between sampling machines and lunar soil simulant, and to verify the feasibility of modular modeling of lunar soil sampling machines. The experimental study on mechanical penetration load under different conditions was carried out, based on the CUG-1A lunar soil simulant developed by China University of Geosciences (Wuhan), and the theoretical model was established based on the experimental results for verification. The average growth rate of penetration resistance of each machine in the shallow simulation of lunar soil was 19.9%, which was increased to 38.18% in the shallow simulation, and 63.43% in the deep simulation. The average error of penetration velocity to penetration resistance was 2.5%; the average growth rate between penetration angle and penetration resistance was 62.85%; the penetration resistance of different cross-section machines was approximately 1∶2∶3∶4. At the same time, the modular verification of the machine structure was carried out, and the accuracy of the test and model can reach more than 85%. The penetration resistance of sampling machines is significantly correlated with penetration depth, mode and machine structure, and the modular theoretical model can be established to accurately predict the penetration resistance of machines under different conditions.

       

    • loading
    • Agui, J. H., Bucek, M., DeGennaro, A., et al., 2013. Lunar Excavation Experiments in Simulant Soil Test Beds: Revisiting the Surveyor Geotechnical Data. Journal of Aerospace Engineering, 26(1): 117-133. https://doi.org/10.1061/(asce)as.1943⁃5525.0000249
      Cai, H. H., Peng, Z. B., 2015. Taking the Moon Drilling as an Example to Explore Exoplanet Drilling Technology. Science & Technology Vision, (16): 6-7 (in Chinese with English abstract).
      Chen, T., Zhao, Z., Wang, Q., et al., 2019. Modeling and Experimental Investigation of Drilling into Lunar Soils. Applied Mathematics and Mechanics, 40(1): 153-166. https://doi.org/10.1007/s10483⁃019⁃2410⁃8
      Gao, H., Duan, L. C., Li, Q., et al., 2014. Surface Sampling Experiment for Lunar Soil Simulant. Geological Science and Technology Information, 33(6): 175-179 (in Chinese with English abstract).
      Green, A., Zacny, K., 2014. Effect of Mars Atmospheric Pressure on Percussive Excavation Forces. Journal of Terramechanics, 51: 43-52. https://doi.org/10.1016/j.jterra.2013.11.001
      Gu, Y., Sun, J. Y., Xiao, Q., et al., 2022. Morphology of Lunar Soil Returned by Chang'E⁃5 Mission and Implications for Space Weathering. Earth Science, 47(11): 4145-4160 (in Chinese with English abstract).
      Johnson, L. L., King, R. H., 2010. Measurement of Force to Excavate Extraterrestrial Regolith with a Small Bucket⁃Wheel Device. Journal of Terramechanics, 47(2): 87-95. https://doi.org/10.1016/j.jterra.2009.08.002
      King, R. H., Van Susante, P., Gefreh, M. A., 2011. Analytical Models and Laboratory Measurements of the Soil⁃Tool Interaction Force to Push a Narrow Tool through JSC⁃1A Lunar Simulant and Ottawa Sand at Different Cutting Depths. Journal of Terramechanics, 48(1): 85-95. https://doi.org/10.1016/j.jterra.2010.07.003
      Li, Q., Xie, L. L., Li, J. P., 2019. Modular Motion⁃Structure Design Model for Planetary Surface Sampling. International Journal of Aerospace Engineering, 2019: 5987306. https://doi.org/10.1155/2019/5987306
      Li, Q., Gao, H., Xie, L. L., et al., 2021. Review of Research about Lunar Drilling Technology. Drilling Engineering, 48(1): 15-34 (in Chinese with English abstract).
      Liu, D. Y., Wang, L. S., Sun, Q. C., et al., 2018. Drilling Experiment of Simulated Icy Soil of Lunar Polar Region. Science Technology and Engineering, 18(25): 256-261 (in Chinese with English abstract).
      Maciejewski, J., Jarzębowski, A., Tra̧mpczyński, W., 2003. Study on the Efficiency of the Digging Process Using the Model of Excavator Bucket. Journal of Terramechanics, 40(4): 221-233. https://doi.org/10.1016/j.jterra.2003.12.003
      Obermayr, M., Dressler, K., Vrettos, C., et al., 2011. Prediction of Draft Forces in Cohesionless Soil with the Discrete Element Method. Journal of Terramechanics, 48(5): 347-358. https://doi.org/10.1016/j.jterra.2011.08.003
      Pan, Y. X., Wang, C., 2021. Developing the Planetary Science Research for the Sustainable Deep Space Exploration of China. Bulletin of National Natural Science Foundation of China, 35(2): 181-185 (in Chinese with English abstract).
      Pang, Y., Feng, Y. J., Sun, Q. C., et al., 2019. Simulation and Experimental Study on the Effect of Large Granular Rocks in Lunar Soil on Drilling Load. Acta Scientiarum Naturalium Universitatis Pekinensis, 55(3): 397-404 (in Chinese with English abstract).
      Quan, Q. Q., Tang, J. Y., Yuan, F. P., et al., 2017. Drilling Load Modeling and Validation Based on the Filling Rate of Auger Flute in Planetary Sampling. Chinese Journal of Aeronautics, 30(1): 434-446. https://doi.org/10.1016/j.cja.2016.05.003
      Tang, J. Y., 2020. Research on the Characteristics of Adaptive Drilling and Coring into High Compacted Lunar Regolith Simulant (Dissertation). Harbin Institute of Technology, Harbin (in Chinese with English abstract).
      Tian, Y., Deng, Z. Q., Tang, D. W., et al., 2012. Structure Parameters Optimization and Simulation Experiment of Auger in Lunar Soil Drill⁃Sampling Device. Journal of Mechanical Engineering, 48(23): 10-15 (in Chinese with English abstract). doi: 10.3901/JME.2012.23.010
      Wu, W. R., Yu, D. Y., 2014. Development of Deep Space Exploration and Its Future Key Technologies. Journal of Deep Space Exploration, 1(1): 5-17 (in Chinese with English abstract).
      Xiao, L., He, X. X., Wu, T., et al., 2009. Properties and Simulation of Lunar Soil CUG⁃1A. Seventh Annual Conference of the Society of Space Science, Dalian (in Chinese with English abstract).
      Zhang, T., Ding, X. L., 2017. Drilling Forces Model for Lunar Regolith Exploration and Experimental Validation. Acta Astronautica, 131: 190-203. https://doi.org/10.1016/j.actaastro.2016.11.035
      Zhao, Z., Chen, T., Pang, Y., 2019. Optimum Parameter Matching Obtained by Experiments for Coring Drilling into Lunar Simulant. Advances in Space Research, 63(7): 2239-2244. https://doi.org/10.1016/j.asr.2018.12.025
      Zhao, Z. J., 2014. Lunar Surface Sampling Study on Mechanical Characteristics of Tool⁃Soil Interaction (Dissertation). Jilin University, Changchun (in Chinese with English abstract).
      Zhu, Y. O., 2014. Mechanical Model on Interaction between Drill Bit and Lunar Soil and Finite Analysis (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      蔡黄河, 彭振斌, 2015. 以月球钻探为例探索地外星体钻探技术. 科技视界, (16): 6-7. https://www.cnki.com.cn/Article/CJFDTOTAL-KJSJ201516003.htm
      高辉, 段隆臣, 李谦, 等, 2014. 模拟月壤表层采样试验研究. 地质科技通报, 33(6): 175-179. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201406025.htm
      顾铱, 孙继尧, 肖倩, 等, 2022. 嫦娥五号返回月壤微观形貌特征及其对太空风化的指示意义. 地球科学, 47(11): 4145-4160. doi: 10.3799/dqkx.2022.432
      李谦, 高辉, 谢兰兰, 等, 2021. 月球钻探取样技术研究进展. 钻探工程, 48(1): 15-34. https://www.cnki.com.cn/Article/CJFDTOTAL-TKGC202101004.htm
      刘德赟, 王露斯, 孙启臣, 等, 2018. 月球极区冻土模拟月壤钻进试验研究. 科学技术与工程, 18(25): 256-261. doi: 10.3969/j.issn.1671-1815.2018.25.040
      潘永信, 王赤, 2021. 国家深空探测战略可持续发展需求: 行星科学研究. 中国科学基金, 35(2): 181-185. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJJ202102004.htm
      庞勇, 冯亚杰, 孙启臣, 等, 2019. 月壤大颗粒对钻进力载影响的仿真及实验研究. 北京大学学报(自然科学版), 55(3): 397-404. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201903001.htm
      唐钧跃, 2020. 高密实度模拟月壤自适应钻进取芯特性研究(博士学位论文). 哈尔滨: 哈尔滨工业大学.
      田野, 邓宗全, 唐德威, 等, 2012. 月壤钻探采样装置中的钻杆结构参数优化设计及模拟试验. 机械工程学报, 48(23): 10-15. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201223003.htm
      吴伟仁, 于登云, 2014. 深空探测发展与未来关键技术. 深空探测学报, 1(1): 5-17. https://www.cnki.com.cn/Article/CJFDTOTAL-SKTC201401003.htm
      肖龙, 贺新星, 吴涛, 等, 2009. 月壤的性质与模拟月壤CUG⁃1A. 大连: 空间科学学会第七次学术年会.
      赵振家, 2014. 月面表取采样机土作用力学特性研究(硕士学位论文). 长春: 吉林大学.
      朱燕鸥, 2014. 钻头‒月壤相互作用力学模型及仿真分析(硕士学位论文). 北京: 中国地质大学.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(18)  / Tables(6)

      Article views (870) PDF downloads(32) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return