• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 7
    Jul.  2024
    Turn off MathJax
    Article Contents
    Wan Yongge, 2024. Focal Mechanism Classification Based on Areal Strain of Horizontal Strain Rosette of Focal Mechanism and Characteristic Analysis of Overall Focal Mechanism of Earthquake Sequence. Earth Science, 49(7): 2675-2684. doi: 10.3799/dqkx.2022.245
    Citation: Wan Yongge, 2024. Focal Mechanism Classification Based on Areal Strain of Horizontal Strain Rosette of Focal Mechanism and Characteristic Analysis of Overall Focal Mechanism of Earthquake Sequence. Earth Science, 49(7): 2675-2684. doi: 10.3799/dqkx.2022.245

    Focal Mechanism Classification Based on Areal Strain of Horizontal Strain Rosette of Focal Mechanism and Characteristic Analysis of Overall Focal Mechanism of Earthquake Sequence

    doi: 10.3799/dqkx.2022.245
    • Received Date: 2022-03-07
      Available Online: 2024-08-03
    • Publish Date: 2024-07-25
    • Classification of seismic focal mechanism plays an important role in earthquake dynamic analysis. However, focal mechanism classification is quite arbitrary at present, and the existence of the undefined type increases the difficulty of further analysis. To solve this problem, the authors introduce the areal strain (As) of seismic focal mechanism as the standard for the division of focal mechanism types: normal fault type with -1≤As < -0.7, normal strike-slip type with -0.7≤As < -0.3, strike-slip type with -0.3≤As≤0.3, reverse strike-slip type with 0.3 < As≤0.7, and reverse fault type with 0.7 < As≤1. Because the areal strain of horizontal strain rosette divides the focal mechanism according to the proportion of vertical and horizontal deformation caused by the source, the trouble of division by multiple combination of three axial plunge angles is avoided, and the problem of undefined type of focal mechanism is avoided. By presenting this partition strategy in spherical triangle diagram to show the focal mechanism classification, the type classification boundaries of focal mechanism are found to be symmetric. In addition, the overall sliding behavior of earthquake sequence on an active fault or seismic belt is quite important for geodynamic studies. Supposing that the earthquakes occur on a fault belt ruptured as the same focal mechanism, i.e. the released moment tensor dominated by the earthquakes with large moment tensor, and the other focal mechanisms are caused by observational errors, or secondary/minor fault rupture, then the overall focal mechanism can reflect the rupture property of the fault belt. This study proposes averaging the seismic moment tensor weighted by scalar seismic moment of the aftershocks to obtain the overall focal mechanism of earthquakes on an active fault or seismic belt, thus the difference of sliding behavior of the main shock and aftershocks can be analyzed. By adopting the above method in 2021 Qinghai Madoi earthquake sequence and 2022 Qinghai Menyuan earthquake sequence, the difference of slip properties between the main shock and other earthquakes is obtained. It is found that the overall focal mechanism of the 2022 Menyuan aftershocks is almost the same with that of the main shock, while the overall focal mechanism of the aftershocks in 2021 Madoi earthquake sequence has certain differences with that of the main shock. The method provides a tool for fault slip characteristics and geodynamic analysis in an active fault or seismic region.

       

    • loading
    • Amelung, F., King, G., 1997. Large-Scale Tectonic Deformation Inferred from Small Earthquakes. Nature, 386(6626): 702-705. https://doi.org/10.1038/386702a0
      Cui, H. W., Wan, Y. G., Huang, J. C., et al., 2017. The Tectonic Stress Field in the Source of the New Britain Ms7.4 Earthquake of March 2015 and Adjacent Areas. Chinese Journal of Geophysics, 60(3): 985-998 (in Chinese with English abstract).
      Cui, H. W., Wan, Y. G., Wang, X. S., et al., 2021. Characteristic of Tectonic Stress Field in Source Region of 2018 Mw7.6 Palu Earthquake and Sulawesi Area. Earth Science, 46(7): 2657-2674 (in Chinese with English abstract).
      Du, Y., Zhang, Z. W., Ruan, X., et al., 2016. Earthquake Spatial Distribution and Stress-Field Characteristics before the Impoundment of the Dagangshan Reservoir. China Earthquake Engineering Journal, 38(S1): 36-43 (in Chinese with English abstract).
      Li P. E., Liao, L., Feng, J. Z., 2022. Relationship between Stress Evolution and Aftershocks after Changning M6.0 Earthquake in Sichuan on 17 June, 2019. Earth Science, 47(6): 2149-2164 (in Chinese with English abstract).
      Liu, J. R., Ren, Z. K., Min, W., et al., 2021. The Advance in Obtaining Fault Slip Rate of Strike Slip Fault—A Review. Earthquake Research Advances, 1(4): 100032. https://doi.org/10.1016/j.eqrea.2021.100032
      Frohlich, C., 1992. Triangle Diagrams: Ternary Graphs to Display Similarity and Diversity of Earthquake Focal Mechanisms. Physics of the Earth and Planetary Interiors, 75(1-3): 193-198. https://doi.org/10.1016/0031-9201(92)90130-N
      Frohlich, C., 2001. Display and Quantitative Assessment of Distributions of Earthquake Focal Mechanisms. Geophysical Journal International, 144(2): 300-308. https://doi.org/10.1046/j.1365-246x.2001.00341.x
      Frohlich, C., Apperson, K. D., 1992. Earthquake Focal Mechanisms, Moment Tensors, and the Consistency of Seismic Activity near Plate Boundaries. Tectonics, 11(2): 279-296. https://doi.org/10.1029/91tc02888
      Hanks, T. C., Kanamori, H., 1979. A Moment Magnitude Scale. Journal of Geophysical Research: Solid Earth, 84(B5): 2348-2350. https://doi.org/10.1029/jb084ib05p02348
      Kaverina, A. N., Lander, A. V., Prozorov, A. G., 1996. Global Creepex Distribution and Its Relation to Earthquake-Source Geometry and Tectonic Origin. Geophysical Journal International, 125(1): 249-265. https://doi.org/10.1111/j.1365-246X.1996.tb06549.x
      Mallman, E. P., Parsons, T., 2008. A Global Search for Stress Shadows. Journal of Geophysical Research: Solid Earth, 113(B12): B12304. https://doi.org/10.1029/2007jb005336
      Palano, M., Imprescia, P., Gresta, S., 2013. Current Stress and Strain-Rate Fields across the Dead Sea Fault System: Constraints from Seismological Data and GPS Observations. Earth and Planetary Science Letters, 369-370: 305-316. https://doi.org/10.1016/j.epsl.2013.03.043
      Sheng, S. Z., Wan, Y. G., Huang, J. C., et al., 2015. Present Tectonic Stress Field in the Circum-Ordos Region Deduced from Composite Focal Mechanism Method. Chinese Journal of Geophysics, 58(2): 436-452 (in Chinese with English abstract).
      Wan, Y. G., 2016. Introduction to Seismology. Science Press, Beijing (in Chinese).
      Wan, Y. G., 2019. Determination of Center of Several Focal Mechanisms of the Same Earthquake. Chinese Journal of Geophysics, 62(12): 4718-4728 (in Chinese with English abstract).
      Wan, Y. G., 2020. Simulation on Relationship between Stress Regimes and Focal Mechanisms of Earthquakes. Chinese Journal of Geophysics, 63(6): 2281-2296 (in Chinese with English abstract).
      Wan, Y. G., Shen, Z. K., Sheng, S. Z., et al., 2009. The Influence of 2008 Wenchuan Earthquake on Surrounding Faults. Acta Seismologica Sinica, 31(2): 128-139 (in Chinese with English abstract).
      Wessel, P., Smith, W. H. F., 1998. New Improved Version of Generic Mapping Tools Released. EOS, Transactions American Geophysical Union, 79(47): 579. https://doi.org/10.1029/98eo00426
      Xu, Y. C., Guo, X. Y., Feng, L. L., 2022. Relocation and Focal Mechanism Solutions of the Ms6.9 Menyuan Earthquake Sequence on January 8, 2022 in Qinghai Province. Acta Seismologica Sinica, 44(2): 195-210 (in Chinese with English abstract).
      Yang, Y. H., Zhang, X. M., Hua, Q., et al., 2021. Segmentation Characteristics of the Longmenshan Fault— Constrained from Dense Focal Mechanism Data. Chinese Journal of Geophysics, 64(4): 1181-1205 (in Chinese with English abstract).
      Yu, C. P., Vavryčuk, V., Adamová, P., et al., 2018. Moment Tensors of Induced Microearthquakes in the Geysers Geothermal Reservoir from Broadband Seismic Recordings: Implications for Faulting Regime, Stress Tensor, and Fluid Pressure. Journal of Geophysical Research: Solid Earth, 123(10): 8748-8766. https://doi.org/10.1029/2018jb016251
      Zhang, J. Y., Wang, X., Chen, L., et al., 2022. Seismotectonics and Fault Geometries of the Qinghai Madoi Ms7.4 Earthquake Sequence: Insight from Aftershock Relocations and Focal Mechanism Solutions. Chinese Journal of Geophysics, 65(2): 552-562 (in Chinese with English abstract).
      Zhang, Z. W., Ruan, X., Wang, X. S., et al., 2015. Spatial-Temporal Evolution of Stress Fields in Sichuan Area before and after the 2008 Wenchuan and the 2013 Lushan Earthquake. Earthquake, 35(4): 136-146 (in Chinese with English abstract).
      Zheng, J. C., Wang, P., Li, D. M., et al., 2013. Tectonic Stress Field in Shandong Region Inferred from Small Earthquake Focal Mechanism Solutions. Acta Seismologica Sinica, 35(6): 773-784 (in Chinese with English abstract).
      Zoback, M. L., 1992. First- and Second-Order Patterns of Stress in the Lithosphere: The World Stress Map Project. Journal of Geophysical Research: Solid Earth, 97(B8): 11703-11728. https://doi.org/10.1029/92jb00132
      崔华伟, 万永革, 黄骥超, 等, 2017.2015年3月新不列颠Ms7.4地震震源及邻区构造应力场特征. 地球物理学报, 60(3): 985-998. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201703014.htm
      崔华伟, 万永革, 王晓山, 等, 2021.2018年帕卢Mw7.6地震震源及苏拉威西地区构造应力场特征. 地球科学, 46(7): 2657-2674. doi: 10.3799/dqkx.2020.243
      杜瑶, 张致伟, 阮祥, 等, 2016. 大岗山水库蓄水前库区地震空间分布及应力场特征. 地震工程学报, 38(S1): 36-43. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ2016S1006.htm
      李平恩, 廖力, 奉建州, 2022.2019年6月17日四川长宁6.0级地震震后应力演化与余震关系研究. 地球科学, 47(6): 2149-2164. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202206019.htm
      盛书中, 万永革, 黄骥超, 等, 2015. 应用综合震源机制解法推断鄂尔多斯块体周缘现今地壳应力场的初步结果. 地球物理学报, 58(2): 436-452. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201502008.htm
      万永革, 2016. 地震学导论. 北京: 科学出版社.
      万永革, 2019. 同一地震多个震源机制中心解的确定. 地球物理学报, 62(12): 4718-4728. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201912018.htm
      万永革, 2020. 震源机制与应力体系关系模拟研究. 地球物理学报, 63(6): 2281-2296. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202006017.htm
      万永革, 沈正康, 盛书中, 等, 2009.2008年汶川大地震对周围断层的影响. 地震学报, 31(2): 128-139. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB200902002.htm
      许英才, 郭祥云, 冯丽丽, 2022.2022年1月8日青海门源Ms6.9地震序列重定位和震源机制解研究. 地震学报, 44(2): 195-210. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB202202002.htm
      杨宜海, 张雪梅, 花茜, 等, 2021. 龙门山断裂带的分段性特征——来自密集震源机制解的约束. 地球物理学报, 64(4): 1181-1205. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202104005.htm
      张建勇, 王新, 陈凌, 等, 2022. 基于余震重定位和震源机制解研究青海玛多Ms7.4地震序列的发震构造和断裂形态. 地球物理学报, 65(2): 552-562. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202202009.htm
      张致伟, 阮祥, 王晓山, 等, 2015. 汶川、芦山地震前后四川地区应力场时空演化. 地震, 35(4): 136-146. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZN201504015.htm
      郑建常, 王鹏, 李冬梅, 等, 2013. 使用小震震源机制解研究山东地区背景应力场. 地震学报, 35(6): 773-784. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB201306001.htm
    • dqkxzx-49-7-2675-附录.docx
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(5)

      Article views (900) PDF downloads(91) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return