• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 3
    Mar.  2023
    Turn off MathJax
    Article Contents
    Guo Qinghai, Meng Yue, Yan Ketao, 2023. Simultaneous Quantitative Analysis of Multiple Methylthiolated Arsenates in Geothermal Water. Earth Science, 48(3): 1138-1145. doi: 10.3799/dqkx.2022.250
    Citation: Guo Qinghai, Meng Yue, Yan Ketao, 2023. Simultaneous Quantitative Analysis of Multiple Methylthiolated Arsenates in Geothermal Water. Earth Science, 48(3): 1138-1145. doi: 10.3799/dqkx.2022.250

    Simultaneous Quantitative Analysis of Multiple Methylthiolated Arsenates in Geothermal Water

    doi: 10.3799/dqkx.2022.250
    • Received Date: 2022-04-14
      Available Online: 2023-03-27
    • Publish Date: 2023-03-25
    • Geothermal waters generally have far higher arsenic concentrations than other types of natural waters, and analysis of arsenic speciation in geothermal waters is of great environmental geochemical significance. Methylthiolated arsenates are non-negligible arsenic species under special aqueous environmental conditions, while little environmental geochemical studies of methylthiolated arsenates have been done so far. In this work, various methylthiolated arsenates standards were synthesized, and an ion chromatography coupled to inductively coupled plasma-mass spectrometry, capable of determining concentrations of common arsenic species as well as methylthiolated arsenates in natural waters including monomethylmonothioarsenate (MMMTA), monomethyldithioarsenate (MMDTA), monomethyltrithioarsenate (MMTTA), dimethylmonothioarsenate (DMMTA), and dimethyldithioarsenate (DMDTA), was set up. Furthermore, the arsenic speciation in a typical geothermal water sample was analyzed. The efforts made in this study produced an analytical method basis for future geochemical studies of methylthiolated arsenates in aqueous environments.

       

    • loading
    • Ackerman, A. H., Creed, P. A., Parks, A. N., et al., 2005. Comparison of a Chemical and Enzymatic Extraction of Arsenic from Rice and an Assessment of the Arsenic Absorption from Contaminated Water by Cooked Rice. Environmental Science & Technology, 39(14): 5241-5246. https://doi.org/10.1021/es048150n
      Burton, E. D., Johnston, S. G., Planer-Friedrich, B., 2013. Coupling of Arsenic Mobility to Sulfur Transformations during Microbial Sulfate Reduction in the Presence and Absence of Humic Acid. Chemical Geology, 343: 12-24. https://doi.org/10.1016/j.chemgeo.2013.02.005
      Couture, R. M., Rose, J., Kumar, N., et al., 2013. Sorption of Arsenite, Arsenate, and Thioarsenates to Iron Oxides and Iron Sulfides: A Kinetic and Spectroscopic Investigation. Environmental Science & Technology, 47(11): 5652-5659. https://doi.org/10.1021/es3049724
      Guo, Q. H., Cao, Y. W., Li, J. X., et al., 2015. Natural Attenuation of Geothermal Arsenic from Yangbajain Power Plant Discharge in the Zangbo River, Tibet, China. Applied Geochemistry, 62: 164-170. https://doi.org/10.1016/j.apgeochem.2015.01.017
      Guo, Q. H., Liu, M. L., Li, J. X., 2017. Thioarsenic Species in the High‐Temperature Hot Springs from the Rehai Geothermal Field (Tengchong) and Their Geochemical Geneses. Earth Science, 42(2): 286-297 (in Chinese with English abstract).
      Guo, Q. H., Planer-Friedrich, B., Liu, M. L., et al., 2017. Arsenic and Thioarsenic Species in the Hot Springs of the Rehai Magmatic Geothermal System, Tengchong Volcanic Region, China. Chemical Geology, 453: 12-20. https://doi.org/10.1016/j.chemgeo.2017.02.010
      Guo, Q. H., Planer-Friedrich, B., Liu, M. L., et al., 2019. Magmatic Fluid Input Explaining the Geochemical Anomaly of very High Arsenic in Some Southern Tibetan Geothermal Waters. Chemical Geology, 513: 32-43. https://doi.org/10.1016/j.chemgeo.2019.03.008
      Hansen, H. R., Raab, A., Jaspars, M., et al., 2004. Sulfur-Containing Arsenical Mistaken for Dimethylarsinous Acid [DMA(Ⅲ)]and Identified as a Natural Metabolite in Urine: Major Implications for Studies on Arsenic Metabolism and Toxicity. Chemical Research in Toxicology, 17(8): 1086-1091. https://doi.org/10.1021/tx049978q
      Hinrichsen, S., Geist, F., Planer-Friedrich, B., 2015. Inorganic and Methylated Thioarsenates Pass the Gastrointestinal Barrier. Chemical Research in Toxicology, 28(9): 1678-1680. https://doi.org/10.1021/acs.chemrestox.5b00268
      Naranmandura, H., Suzuki, N., Suzuki, K. T., 2006. Trivalent Arsenicals are Bound to Proteins during Reductive Methylation. Chemical Research in Toxicology, 19(8): 1010-1018. https://doi.org/10.1021/tx060053f
      Planer-Friedrich, B., London, J., McCleskey, R. B., et al., 2007. Thioarsenates in Geothermal Waters of Yellowstone National Park: Determination, Preservation, and Geochemical Importance. Environmental Science & Technology, 41(15): 5245-5251. https://doi.org/10.1021/es070273v
      Stauder, S., Raue, B., Sacher, F., 2005. Thioarsenates in Sulfidic Waters. Environmental Science & Technology, 39(16): 5933-5939. https://doi.org/10.1021/es048034k
      Styblo, M., Del Razo, L. M., Vega, L., et al., 2000. Comparative Toxicity of Trivalent and Pentavalent Inorganic and Methylated Arsenicals in Rat and Human Cells. Archives of Toxicology, 74(6): 289-299. https://doi.org/10.1007/s002040000134
      Styblo, M., Serves, S. V., Cullen, W. R., et al., 1997. Comparative Inhibition of Yeast Glutathione Reductase by Arsenicals and Arsenothiols. Chemical Research in Toxicology, 10(1): 27-33. https://doi.org/10.1021/tx960139g
      Suess, E., Wallschläger, D., Planer-Friedrich, B., 2015. Anoxic, Ethanolic, and Cool-An Improved Method for Thioarsenate Preservation in Iron-Rich Waters. Applied Geochemistry, 62: 224-233. https://doi.org/10.1016/j.apgeochem.2014.11.017
      Suess, E., Planer-Friedrich, B., 2012. Thioarsenate Formation Upon Dissolution of Orpiment and Arsenopyrite. Chemosphere, 89(11): 1390-1398. https://doi.org/10.1016/j.chemosphere.2012.05.109
      Suess, E., Wallschläger, D., Planer-Friedrich, B., 2011. Stabilization of Thioarsenates in Iron-Rich Waters. Chemosphere, 83(11): 1524-1531. https://doi.org/10.1016/j.chemosphere.2011.01.045
      Suzuki, K. T., Iwata, K., Naranmandura, H., Suzuki, N., 2007. Metabolic Differences between Two Dimethylthioarsenicals in Rats. Toxicology and Applied Pharmacology, 218(2): 166-173. https://doi.org/10.1016/j.taap.2006.10.027
      Suzuki, K. T., Mandal, B. K., Katagiri, A., et al., 2004. Dimethylthioarsenicals as Arsenic Metabolites and Their Chemical Preparations. Chemical Research in Toxicology, 17(7): 914-921. https://doi.org/10.1021/tx049963s
      Ullrich, M. K., Pope, J. G., Seward, T. M., et al., 2013. Sulfur Redox Chemistry Governs Diurnal Antimony and Arsenic Cycles at Champagne Pool, Waiotapu, New Zealand. Journal of Volcanology and Geothermal Research, 262: 164-177. https://doi.org/10.1016/j.jvolgeores.2013.07.007
      Wallschläger, D., London, J., 2008. Determination of Methylated Arsenic-Sulfur Compounds in Groundwater. Environmental Science & Technology, 42(1): 228-234. https://doi.org/10.1021/es0707815
      Wang, M. D., Guo, Q. H., Guo, W., et al., 2016. Synthesis, Identification and Quantitative Analysis of Aqueous Thioarsenates. Chinese Journal of Analytical Chemistry, 44(11): 1715-1720 (in Chinese with English abstract).
      Wang, Y., Xu, L. Y., Jia, Y. F., 2015. Study on the Adsorption Behavior of Thioarsenite at the Water-Mineral Interface in an Anaerobic Environment. Journal of Jilin University (Earth Science Edition), 45 (Suppl. 1): 43 (in Chinese).
      Xiao, F., Jia, Y. F., 2015. Study on the Adsorption Behavior of Thioarsenate at the Water-Mineral Interface in an Anaerobic Environment. Journal of Jilin University (Earth Science Edition), 45 (Suppl. 1): 42 (in Chinese).
      Zhuang, Y. Q., Guo, Q. H., Liu, M. L., et al., 2016. Geochemical Simulation of Thioarsenic Speciation in High‐Temperature, Sulfide‐Rich Hot Springs: A Case Study in the Rehai Hydrothermal Area, Tengchong, Yunnan. Earth Science, 41(9): 1499-1510 (in Chinese with English abstract).
      郭清海, 刘明亮, 李洁祥, 2017. 腾冲热海地热田高温热泉中的硫代砷化物及其地球化学成因. 地球科学, 42(2): 286-297. doi: 10.3799/dqkx.2017.021
      王敏黛, 郭清海, 郭伟, 等, 2016. 硫代砷化物的合成、鉴定和定量分析方法研究. 分析化学, 44(11): 1715-1720. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201611013.htm
      王莹, 许丽英, 贾永锋, 2015. 厌氧环境中硫代亚砷在水‒矿物界面的吸附行为研究. 吉林大学学报(地球科学版), 45(Suppl. 1): 43. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGKD201506002167.htm
      肖翻, 贾永锋, 2015. 厌氧环境中硫代As (Ⅴ) 在水‒矿物界面的吸附研究. 吉林大学学报(地球科学版), 45 (Suppl. 1): 42. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGKD201506002166.htm
      庄亚芹, 郭清海, 刘明亮, 等, 2016. 高温富硫化物热泉中硫代砷化物存在形态的地球化学模拟: 以云南腾冲热海水热区为例. 地球科学, 41(9): 1499-1510. doi: 10.3799/dqkx.2016.513
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)  / Tables(1)

      Article views (918) PDF downloads(59) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return