| Citation: | Guo Qinghai, Meng Yue, Yan Ketao, 2023. Simultaneous Quantitative Analysis of Multiple Methylthiolated Arsenates in Geothermal Water. Earth Science, 48(3): 1138-1145. doi: 10.3799/dqkx.2022.250 |
|
Ackerman, A. H., Creed, P. A., Parks, A. N., et al., 2005. Comparison of a Chemical and Enzymatic Extraction of Arsenic from Rice and an Assessment of the Arsenic Absorption from Contaminated Water by Cooked Rice. Environmental Science & Technology, 39(14): 5241-5246. https://doi.org/10.1021/es048150n
|
|
Burton, E. D., Johnston, S. G., Planer-Friedrich, B., 2013. Coupling of Arsenic Mobility to Sulfur Transformations during Microbial Sulfate Reduction in the Presence and Absence of Humic Acid. Chemical Geology, 343: 12-24. https://doi.org/10.1016/j.chemgeo.2013.02.005
|
|
Couture, R. M., Rose, J., Kumar, N., et al., 2013. Sorption of Arsenite, Arsenate, and Thioarsenates to Iron Oxides and Iron Sulfides: A Kinetic and Spectroscopic Investigation. Environmental Science & Technology, 47(11): 5652-5659. https://doi.org/10.1021/es3049724
|
|
Guo, Q. H., Cao, Y. W., Li, J. X., et al., 2015. Natural Attenuation of Geothermal Arsenic from Yangbajain Power Plant Discharge in the Zangbo River, Tibet, China. Applied Geochemistry, 62: 164-170. https://doi.org/10.1016/j.apgeochem.2015.01.017
|
|
Guo, Q. H., Liu, M. L., Li, J. X., 2017. Thioarsenic Species in the High‐Temperature Hot Springs from the Rehai Geothermal Field (Tengchong) and Their Geochemical Geneses. Earth Science, 42(2): 286-297 (in Chinese with English abstract).
|
|
Guo, Q. H., Planer-Friedrich, B., Liu, M. L., et al., 2017. Arsenic and Thioarsenic Species in the Hot Springs of the Rehai Magmatic Geothermal System, Tengchong Volcanic Region, China. Chemical Geology, 453: 12-20. https://doi.org/10.1016/j.chemgeo.2017.02.010
|
|
Guo, Q. H., Planer-Friedrich, B., Liu, M. L., et al., 2019. Magmatic Fluid Input Explaining the Geochemical Anomaly of very High Arsenic in Some Southern Tibetan Geothermal Waters. Chemical Geology, 513: 32-43. https://doi.org/10.1016/j.chemgeo.2019.03.008
|
|
Hansen, H. R., Raab, A., Jaspars, M., et al., 2004. Sulfur-Containing Arsenical Mistaken for Dimethylarsinous Acid [DMA(Ⅲ)]and Identified as a Natural Metabolite in Urine: Major Implications for Studies on Arsenic Metabolism and Toxicity. Chemical Research in Toxicology, 17(8): 1086-1091. https://doi.org/10.1021/tx049978q
|
|
Hinrichsen, S., Geist, F., Planer-Friedrich, B., 2015. Inorganic and Methylated Thioarsenates Pass the Gastrointestinal Barrier. Chemical Research in Toxicology, 28(9): 1678-1680. https://doi.org/10.1021/acs.chemrestox.5b00268
|
|
Naranmandura, H., Suzuki, N., Suzuki, K. T., 2006. Trivalent Arsenicals are Bound to Proteins during Reductive Methylation. Chemical Research in Toxicology, 19(8): 1010-1018. https://doi.org/10.1021/tx060053f
|
|
Planer-Friedrich, B., London, J., McCleskey, R. B., et al., 2007. Thioarsenates in Geothermal Waters of Yellowstone National Park: Determination, Preservation, and Geochemical Importance. Environmental Science & Technology, 41(15): 5245-5251. https://doi.org/10.1021/es070273v
|
|
Stauder, S., Raue, B., Sacher, F., 2005. Thioarsenates in Sulfidic Waters. Environmental Science & Technology, 39(16): 5933-5939. https://doi.org/10.1021/es048034k
|
|
Styblo, M., Del Razo, L. M., Vega, L., et al., 2000. Comparative Toxicity of Trivalent and Pentavalent Inorganic and Methylated Arsenicals in Rat and Human Cells. Archives of Toxicology, 74(6): 289-299. https://doi.org/10.1007/s002040000134
|
|
Styblo, M., Serves, S. V., Cullen, W. R., et al., 1997. Comparative Inhibition of Yeast Glutathione Reductase by Arsenicals and Arsenothiols. Chemical Research in Toxicology, 10(1): 27-33. https://doi.org/10.1021/tx960139g
|
|
Suess, E., Wallschläger, D., Planer-Friedrich, B., 2015. Anoxic, Ethanolic, and Cool-An Improved Method for Thioarsenate Preservation in Iron-Rich Waters. Applied Geochemistry, 62: 224-233. https://doi.org/10.1016/j.apgeochem.2014.11.017
|
|
Suess, E., Planer-Friedrich, B., 2012. Thioarsenate Formation Upon Dissolution of Orpiment and Arsenopyrite. Chemosphere, 89(11): 1390-1398. https://doi.org/10.1016/j.chemosphere.2012.05.109
|
|
Suess, E., Wallschläger, D., Planer-Friedrich, B., 2011. Stabilization of Thioarsenates in Iron-Rich Waters. Chemosphere, 83(11): 1524-1531. https://doi.org/10.1016/j.chemosphere.2011.01.045
|
|
Suzuki, K. T., Iwata, K., Naranmandura, H., Suzuki, N., 2007. Metabolic Differences between Two Dimethylthioarsenicals in Rats. Toxicology and Applied Pharmacology, 218(2): 166-173. https://doi.org/10.1016/j.taap.2006.10.027
|
|
Suzuki, K. T., Mandal, B. K., Katagiri, A., et al., 2004. Dimethylthioarsenicals as Arsenic Metabolites and Their Chemical Preparations. Chemical Research in Toxicology, 17(7): 914-921. https://doi.org/10.1021/tx049963s
|
|
Ullrich, M. K., Pope, J. G., Seward, T. M., et al., 2013. Sulfur Redox Chemistry Governs Diurnal Antimony and Arsenic Cycles at Champagne Pool, Waiotapu, New Zealand. Journal of Volcanology and Geothermal Research, 262: 164-177. https://doi.org/10.1016/j.jvolgeores.2013.07.007
|
|
Wallschläger, D., London, J., 2008. Determination of Methylated Arsenic-Sulfur Compounds in Groundwater. Environmental Science & Technology, 42(1): 228-234. https://doi.org/10.1021/es0707815
|
|
Wang, M. D., Guo, Q. H., Guo, W., et al., 2016. Synthesis, Identification and Quantitative Analysis of Aqueous Thioarsenates. Chinese Journal of Analytical Chemistry, 44(11): 1715-1720 (in Chinese with English abstract).
|
|
Wang, Y., Xu, L. Y., Jia, Y. F., 2015. Study on the Adsorption Behavior of Thioarsenite at the Water-Mineral Interface in an Anaerobic Environment. Journal of Jilin University (Earth Science Edition), 45 (Suppl. 1): 43 (in Chinese).
|
|
Xiao, F., Jia, Y. F., 2015. Study on the Adsorption Behavior of Thioarsenate at the Water-Mineral Interface in an Anaerobic Environment. Journal of Jilin University (Earth Science Edition), 45 (Suppl. 1): 42 (in Chinese).
|
|
Zhuang, Y. Q., Guo, Q. H., Liu, M. L., et al., 2016. Geochemical Simulation of Thioarsenic Speciation in High‐Temperature, Sulfide‐Rich Hot Springs: A Case Study in the Rehai Hydrothermal Area, Tengchong, Yunnan. Earth Science, 41(9): 1499-1510 (in Chinese with English abstract).
|
|
郭清海, 刘明亮, 李洁祥, 2017. 腾冲热海地热田高温热泉中的硫代砷化物及其地球化学成因. 地球科学, 42(2): 286-297. doi: 10.3799/dqkx.2017.021
|
|
王敏黛, 郭清海, 郭伟, 等, 2016. 硫代砷化物的合成、鉴定和定量分析方法研究. 分析化学, 44(11): 1715-1720. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201611013.htm
|
|
王莹, 许丽英, 贾永锋, 2015. 厌氧环境中硫代亚砷在水‒矿物界面的吸附行为研究. 吉林大学学报(地球科学版), 45(Suppl. 1): 43. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGKD201506002167.htm
|
|
肖翻, 贾永锋, 2015. 厌氧环境中硫代As (Ⅴ) 在水‒矿物界面的吸附研究. 吉林大学学报(地球科学版), 45 (Suppl. 1): 42. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGKD201506002166.htm
|
|
庄亚芹, 郭清海, 刘明亮, 等, 2016. 高温富硫化物热泉中硫代砷化物存在形态的地球化学模拟: 以云南腾冲热海水热区为例. 地球科学, 41(9): 1499-1510. doi: 10.3799/dqkx.2016.513
|