• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 8
    Aug.  2023
    Turn off MathJax
    Article Contents
    Feng Chao, Pan Jianguo, Li Chuang, Yao Qingzhou, Liu jun, 2023. Fault High-Resolution Recognition Method Based on Deep Neural Network. Earth Science, 48(8): 3044-3052. doi: 10.3799/dqkx.2022.276
    Citation: Feng Chao, Pan Jianguo, Li Chuang, Yao Qingzhou, Liu jun, 2023. Fault High-Resolution Recognition Method Based on Deep Neural Network. Earth Science, 48(8): 3044-3052. doi: 10.3799/dqkx.2022.276

    Fault High-Resolution Recognition Method Based on Deep Neural Network

    doi: 10.3799/dqkx.2022.276
    • Received Date: 2022-10-22
    • Publish Date: 2023-08-25
    • Fine fault identification is of great significance to improve the efficiency of exploration and development. Traditional seismic attribute fault recognition technologies identify fractures based on data discontinuity, and there are many interfering factors, making it more and more difficult to meet the needs of fine exploration in deep area. In order to improve the fault identification accuracy, this paper proposes a high-resolution intelligent identification method of fault. Based on the deep learning method to predict fault attributes from seismic data, a high-resolution and low-resolution fault label library is established, and a deep neural network is trained. It is confirmed by the model and actual data that the method solves the problem of high-frequency loss caused by up sampling in the convolutional neural network in deep learning, which reduces the resolution of faults, and improves the resolution ability. The root mean square error of the simulated data decreased by 40.02%.Compared with traditional algorithms, the method not only detects fault features more accurately, but also has a higher resolution than common deep learning fault recognition.

       

    • loading
    • Bahorich, M., Farmer, S., 1995. 3-D Seismic Discontinuity for Faults and Stratigraphic Features: The Coherence Cube. The Leading Edge, 14(10): 1053-1058. https://doi.org/10.1190/1.1437077
      Bahorich, M., Lopez, J., Haskell, N. L., et al., 1995. Stratigraphic and Structural Interpretation with 3D Coherence. SEGTechnical Program Expanded Abstracts. SEG, 97-100. https://doi.org/10.1990/1.1887435
      Bakker, P., van Vliet, L. J., Verbeek, P. W., 1999. Edge Preserving Orientation Adaptive Filtering. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Fort Collins, CO: IEEE, 535-540. https://doi.org/10.1109/CVRP.1999.786989
      Bergbauer, S., Mukerji, T., Hennings, P., 2003. Improving Curvature Analyses of Deformed Horizons Using Scale–Dependent Filtering Techniques. AAPG Bulletin, 87(8): 1255-1272. https://doi.org/10.1306/0319032001101
      Chehrazi, A., Rahimpour-Bonab, H., Rezaee, M. R., 2013. Seismic Data Conditioning and Neural Network-Based Attribute Selection for Enhanced Fault Detection. Petroleum Geoscience, 19(2): 169-183. https://doi.org/10.1144/petgeo2011-001
      Gong, Y. J., Zhang, K. H., Zeng, Z. P., 2021. Origin of Overpressure, Vertical Transfer and Hydrocarbon Accumulation ofJurassic in Fukang Sag, Junggar Basin. Earth Science, 46(10): 3588-3600(in Chinese with English abstract).
      Hinton, G. E., Salakhutdinov, R. R., 2006. Reducing the Dimensionality of Data with Neural Networks. Science, 313(5786): 504-507. https://doi.org/10.1126/science. 1127647 doi: 10.1126/science.1127647
      Huang, L., Dong, X. S., Clee, T. E., 2017. A Scalable Deep Learning Platform for Identifying Geologic Features from Seismic Attributes. The Leading Edge, 36(3): 249-256. https://doi.org/10.1190/tle36030249.1
      LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep Learning. Nature, 521(7553): 436-444. https://doi.org/10.1038/nature14539
      Lecun, Y., Bottou, L., Bengio, Y., et al., 1998. Gradient-Based Learning Applied to Document Recognition. Proceedings of the IEEE, 86(11): 2278-2324. https://doi.org/10.1109/5.726791
      Lisle, R. J., 1994. Detection of Zones of Abnormal Strains in Structures using Gaussian Curvature Analysis. AAPG bulletin, 78(12): 1811-1819. https://doi.org/10.1306/A25FF305-171B-11D7-8645000102C1865D
      Marfurt, K. J., Kirlin, R. L., Farmer, S. L., et al., 1998. 3-D Seismic Attributes Using a Semblance‐Based Coherency Algorithm. Geophysics, 63(4): 1150-1165. https://doi.org/10.1190/1.1444415
      Marfurt, K. J., Sudhaker, V., Gersztenkorn, A., et al., 1999. Coherency Calculations in the Presence of Structural Dip. Geophisics, 65(1): 304-320. https://doi.org/10.1190/1.1444508
      Roberts, A., 2001. Curvature Attributes and Their Application to 3D Interpreted horizons. First Break, 19(2): 85-100. https://doi.org/10.1046/j.02635046200100142x
      Ronneberger, O., Fischer, P., Brox, T., 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. International Conference on Medical Image Computing and Computer-Assisted Intervention, 234-241. https://doi.org/10.1007/978331924574428
      Wang, H. X., Fu, X. F., Fu, G., et al., 2014. Vertical Segmentation Growth of Fault and Oil Source Fault Determination in Fuyang Oil Layer of Sanzhao Depression. Earth Science, 39(11): 1639-1646(in Chinese with English abstract).
      Wu, X. M., Liang, L. M., Shi, Y. Z., 2019. FaultSeg3D: Using Synthetic Data Sets to Train an End-to-End Convolutional Neural Network for 3D Seismic Fault Segmentation. Geophysics, 84(3): 35-45. https://doi.org/10.1190/geo2018-0646.1
      Yan, W. B., Wang, G. C., Li, L., et al., 2015. Deformation Analyses and Their Geological Implications of Carboniferous-Permian Tectonic Transformation Period in Northwest Margin of Junggar Basin. Earth Science, 40(3): 504-520(in Chinese with English abstract).
      Yang, B. L., Ye, J. R., Wang, Z. S., et al., 2014. Hydrocarbon Accumulation Models and Main Controlling Factors in Liaodong Bay Depression. Earth Science, 39(10): 1507-1520(in Chinese with English abstract).
      Yang, W. Y., Yang, J. R., Chen, S. Q., 2021. Fault Detection of Seismic Data Based on U-Net Deep Learning Network. Oil Geophysical Prospecting, 56(4): 688-697(in Chinese with English abstract).
      Yun, L., Zhang, J., Xu, W., et al., 2021. Geometry, Kinematics and Regional Tectonic Significance of the Huahai Fault in the Western Hexi Corridor. Earth Science, 46(1): 259-271(in Chinese with English abstract).
      Zhou, B. W., Chen, H. H., Yun, L., et al., 2022. The Relationship between Fault Displacement and Damage Zone Width of the Paleozoic Strike‐Slip Faults in Shunbei Area, Tarim Basin. Earth Science, 47(2): 437-451 (in Chinese with English abstract).
      Zhou, W. W., Wang, W. F., An, B., et al., 2014. Identification of Potential Fault Zones and Its Geological Significance in Bohai Bay Basin. Earth Science, 39(11): 1627-1638(in Chinese with English abstract).
      宫亚军, 张奎华, 曾治平, 等, 2021. 准噶尔盆地阜康凹陷侏罗系超压成因、垂向传导及油气成藏. 地球科学, 46(10): 3588-3600. doi: 10.3799/dqkx.2020.366
      王海学, 付晓飞, 付广, 等, 2014. 三肇凹陷断层垂向分段生长与扶杨油层油源断层的厘定. 地球科学, 39(11): 1639-1646. doi: 10.3799/dqkx.2014.146
      晏文博, 王国灿, 李理, 等, 2015. 准噶尔西北缘石炭-二叠纪构造转换期变形分析及其地质意义. 地球科学, 40(3): 504-520. doi: 10.3799/dqkx.2015.040
      杨宝林, 叶加仁, 王子嵩, 等, 2014. 辽东湾断陷油气成藏模式及主控因素. 地球科学, 39(10): 1507-1520. doi: 10.3799/dqkx.2014.133
      杨午阳, 杨佳润, 陈双全, 等, 2021. 基于U-Net深度学习网络的地震数据断层检测. 石油地球物理勘探, 56(4): 688-697. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ202104003.htm
      云龙, 张进, 徐伟, 等, 2021. 河西走廊西段花海断裂几何学、运动学及区域构造意义. 地球科学, 46(1): 259-271. doi: 10.3799/dqkx.2019.227
      周铂文, 陈红汉, 云露, 等, 2022. 塔里木盆地顺北地区下古生界走滑断裂带断距分段差异与断层宽度关系. 地球科学, 47(2): 437-451. doi: 10.3799/dqkx.2021.073
      周维维, 王伟锋, 安邦等, 2014. 渤海湾盆地隐性断裂带识别及其地质意义. 地球科学, 39(11): 1627-1638. doi: 10.3799/dqkx.2014.145
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(18)

      Article views (1051) PDF downloads(130) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return