• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 8
    Sep.  2022
    Turn off MathJax
    Article Contents
    Zhang Junfeng, Zhou Yongsheng, Song Maoshuang, 2022. Development Status and Trends of Experimental Rheology. Earth Science, 47(8): 2744-2756. doi: 10.3799/dqkx.2022.301
    Citation: Zhang Junfeng, Zhou Yongsheng, Song Maoshuang, 2022. Development Status and Trends of Experimental Rheology. Earth Science, 47(8): 2744-2756. doi: 10.3799/dqkx.2022.301

    Development Status and Trends of Experimental Rheology

    doi: 10.3799/dqkx.2022.301
    • Received Date: 2022-07-22
    • Publish Date: 2022-09-25
    • Experimental rheology is a discipline that studies the deformation and flow of the main components of the Earth under the action of differential stress by means of high temperature and high pressure experiments. With the continuous development of experimental technology, experimental rheology has developed rapidly in the past three decades. The research scope and research objects have been continuously expanded, playing an important role in the research field of Earth and planetary sciences. This paper briefly introduces the development history of experimental rheology technology, and summarizes the main research progresses and existing problems in the field of experimental research on the rheology of the lithosphere, asthenosphere, transition zone and lower mantle and the study of the intermediate and deep focused earthquake mechanisms. It is proposed that the three-dimensional structure of the rheological properties of different layers of the Earth controlled by composition and thermal structure is the citical scientific problem to be solved in the current experimental rheology research, and on this basis, the priority development directions of experimental rheology in the future is prospected.

       

    • loading
    • Barcheck, C. G., Wiens, D. A., van Keken, P. E., et al., 2012. The Relationship of Intermediate⁃ and Deep⁃Focus Seismicity to the Hydration and Dehydration of Subducting Slabs. Earth and Planetary Science Letters, 349/350: 153-160. https://doi.org/10.1016/j.epsl.2012.06.055
      Brantut, N., Baud, P., Heap, M. J., et al., 2012. Micromechanics of Brittle Creep in Rocks. Journal of Geophysical Research: Solid Earth, 117: B08412. https://www.researchgate.net/publication/258662402_Micromechanics_of_Brittle_Creep_in_Rocks
      Brantut, N., Schubnel, A., Corvisier, J., et al., 2010. Thermochemical Pressurization of Faults during Coseismic Slip. Journal of Geophysical Research: Solid Earth, 115: B05314.
      Brudzinski, M. R., Thurber, C. H., Hacker, B. R., et al., 2007. Global Prevalence of Double Benioff Zones. Science, 316(5830): 1472-1474. https://doi.org/10.1126/science.1139204
      Bürgmann, R., Dresen, G, 2008. Rheology of the Lower Crust and Upper Mantle: Evidence from Rock Mechanics, Geodesy, and Field Observations. Annual Review of Earth and Planetary Sciences, 36: 531-567. https://doi.org/10.1146/ANNUREV.EARTH.36.031207.124326
      Burnley, P. C., Green, H. W., Prior, D. J., 1991. Faulting Associated with the Olivine to Spinel Transformation in Mg2GeO4 and Its Implications for Deep‐Focus Earthquakes. Journal of Geophysical Research: Solid Earth, 96: 425-443. doi: 10.1029/90JB01937
      Byerlee, J., Brace, W, 1968. Stick Slip, Stable Sliding, and Earthquakes⁃Effect of Rock Type, Pressure, Strain Rate, and Stiffness. Journal of Geophysical Research, 73: 6031-6037. https://doi.org/10.1029/JB073I018P06031
      Chen, J., Jin, Z. M., Liu, W. L., et al., 2021. Rheology of Dry K⁃Feldspar Aggregates at High Temperature and High Pressure: an Experimental Study. Tectonophysics, 817: 229072. https://doi.org/10.1016/j.tecto.2021.229072
      Chernak, L. J., Hirth, G, 2010. Deformation of Antigorite Serpentinite at High Temperature and Pressure. Earth and Planetary Science Letters, 296(1/2): 23-33. https://doi.org/10.1016/j.epsl.2010.04.035
      Chernak, L., Hirth, G, 2011. Syndeformational Antigorite Dehydration Produces Stable Fault Slip. Geology, 39: 847-850. https://doi.org/10.1130/G31919.1
      Cooper, R. F., Kohlstedt, D. L., 1986. Rheology and Structure of OLivine⁃Basalt Partial Melts. Journal of Geophysical Research: Solid Earth, 91: 9315-9323. doi: 10.1029/JB091iB09p09315
      Dobson, D. P., Meredith, P. G., Boon, S. A, 2002. Simulation of Subduction Zone Seismicity by Dehydration of Serpentine. Science, 298(5597): 1407-1410. https://doi.org/10.1126/science.1075390
      Dorbath, C., Gerbault, M., Carlier, G., et al., 2008. Double Seismic Zone of the Nazca Plate in Northern Chile: High‐Resolution Velocity Structure, Petrological Implications, and Thermomechanical Modeling. Geochemistry, Geophysics, Geosystems, 9: Q07006.
      Durham, W. B., Weidner, D. J., Karato, S. I., et al., 2002. New Developments in Deformation Experiments at High Pressure. Reviews in Mineralogy and Geochemistry, 51: 21-49. doi: 10.2138/gsrmg.51.1.21
      Faccenda, M., dal Zilio, L, 2017. The Role of Solid⁃Solid Phase Transitions in Mantle Convection. Lithos, 268/269/270/271: 198-224. https://doi.org/10.1016/j.lithos.2016.11.007
      Fei, H. Z., Wiedenbeck, M., Yamazaki, D., et al., 2013. Small Effect of Water on Upper⁃Mantle Rheology Based on Silicon Self⁃Diffusion Coefficients. Nature, 498(7453): 213-215. https://doi.org/10.1038/nature12193
      Ferrand, T. P., Hilairet, N., Incel, S., et al., 2017. Dehydration⁃Driven Stress Transfer Triggers Intermediate⁃Depth Earthquakes. Nature Communications, 8: 15247. https://doi.org/10.1038/ncomms15247
      Florez, M., Prieto, G, 2019. Controlling Factors of Seismicity and Geometry in Double Seismic Zones. Geophysical Research Letters, 46: 4174-4181. https://doi.org/10.1029/2018GL081168
      Frohlich, C., 2006. Deep earthquakes. Cambridge University Press, Cambridge.
      Garnero, E. J., McNamara, A. K., Shim, S. H, 2016. Continent⁃Sized Anomalous Zones with Low Seismic Velocity at the Base of Earth's Mantle. Nature Geoscience, 9(7): 481-489. https://doi.org/10.1038/ngeo2733
      Gasc, J., Schubnel, A., Brunet, F., et al., 2011. Simultaneous Acoustic Emissions Monitoring and Synchrotron X⁃Ray Diffraction at High Pressure and Temperature: Calibration and Application to Serpentinite Dehydration. Physics of the Earth and Planetary Interiors, 189(3/4): 121-133. https://doi.org/10.1016/j.pepi.2011.08.003
      Gerya, T. V., Stern, R. J., Baes, M., et al., 2015. Plate Tectonics on the Earth Triggered by Plume⁃Induced Subduction Initiation. Nature, 527(7577): 221-225. https://doi.org/10.1038/nature15752
      Girard, J., Amulele, G., Farla, R., et al., 2016. Shear Deformation of Bridgmanite and Magnesiowüstite Aggregates at Lower Mantle Conditions. Science, 351(6269): 144-147. https://doi.org/10.1126/science.aad3113
      Goes, S., Agrusta, R., van Hunen, J., et al., 2017. Subduction⁃Transition Zone Interaction: a Review. Geosphere, 13: 644-664. doi: 10.1130/GES01476.1
      Green, H. W., Chen, W. P., Brudzinski, M. R, 2010. Seismic Evidence of Negligible Water Carried below 400 km Depth in Subducting Lithosphere. Nature, 467(7317): 828-831. https://doi.org/10.1038/nature09401
      Green, H. W. II, Zhou, Y, 1996. Transformation⁃Induced Faulting Requires an Exothermic Reaction and Explains the Cessation of Earthquakes at the Base of the Mantle Transition Zone. Tectonophysics, 256(1/2/3/4): 39-56. https://doi.org/10.1016/0040⁃1951(95)00164⁃6
      Green, H. W., Young, T. E., Walker, D., et al., 1990. Anticrack⁃Associated Faulting at very High Pressure in Natural Olivine. Nature, 348(6303): 720-722. https://doi.org/10.1038/348720a0
      Green, H. W., Marone, C., 2002. Instability of Deformation. Reviews in Mineralogy and Geochemistry, 51: 181-199. doi: 10.2138/gsrmg.51.1.181
      Griggs, D., Miller, W. B, 1951. Deformation of Yule Marble: Part I: Compression and Extension Experiments on Dry Yule Marble at 10, 000 Atmospheres Confining Pressure, Room Temperature. Geological Society of America Bulletin, 62: 853-862. https://doi.org/10.1130/0016⁃7606%281951%2962%5B853%3ADOYMPI%5D2.0.CO%3B2
      Hacker, B., Peacock, S., Abers, G., et al., 2003. Subduction Factory 2. are Intermediate\u2010depth Earthquakes in Subducting Slabs Linked to Metamorphic Dehydration Reactions? Journal of Geophysical Research, 108: 2030. https://doi.org/10.1029/2001JB001129
      Hasegawa, A., Nakajima, J, 2017. Seismic Imaging of Slab Metamorphism and Genesis of Intermediate⁃Depth Intraslab Earthquakes. Progress in Earth and Planetary Science, 4: 1-31. https://doi.org/10.1186/s40645⁃017⁃0126⁃9
      Hayes, G. P., Moore, G. L., Portner, D. E., et al., 2018. Slab2, a Comprehensive Subduction Zone Geometry Model. Science, 362(6410): 58-61. https://doi.org/10.1126/science.aat4723
      He, C. R., Zhou, Y. S., Sang, Z. N, 2003. An Experimental Study on Semi⁃Brittle and Plastic Rheology of Panzhihua Gabbro. Science in China (Series D: Earth Sciences), 46(7): 730-742(in Chinese with English abstract). doi: 10.1360/03yd9064
      Hustoft, J., Amulele, G., Ando, J. I., et al., 2013. Plastic Deformation Experiments to High Strain on Mantle Transition Zone Minerals Wadsleyite and Ringwoodite in the Rotational Drickamer Apparatus. Earth and Planetary Science Letters, 361: 7-15. https://doi.org/10.1016/j.epsl.2012.11.028
      Incel, S., Hilairet, N., Labrousse, L., et al., 2017. Laboratory Earthquakes Triggered during Eclogitization of Lawsonite⁃Bearing Blueschist. Earth and Planetary Science Letters, 459: 320-331. https://doi.org/10.1016/j.epsl.2016.11.047
      Irifune, T., Ringwood, A., 1987. Phase Transformations in Primitive MORB and Pyrolite Compositions to 25 GPa and Some Geophysical Implications. In: Manghnani, M. H., Syono, Y., eds., High Pressure Research in Mineral Physics. American Geophysical Union, Washington, 235-246.
      Isacks, B., Molnar, P., 1969. Mantle Earthquake Mechanisms and the Sinking of the Lithosphere. Nature, 223(5211): 1121-1124. https://doi.org/10.1038/2231121a0
      Jiang, G. M., Zhao, D. P, 2011. Metastable Olivine Wedge in the Subducting Pacific Slab and Its Relation to Deep Earthquakes. Journal of Asian Earth Sciences, 42(6): 1411-1423. https://doi.org/10.1016/j.jseaes.2011.08.005
      Jin, Z. M., Zhang, J., Green, H. W., et al., 2001. Eclogite Rheology: Implications for Subducted Lithosphere. Geology, 29: 667-670.
      John, T., Medvedev, S., Rüpke, L. H., et al., 2009. Generation of Intermediate⁃Depth Earthquakes by Self⁃Localizing Thermal Runaway. Nature Geoscience, 2: 137-140. doi: 10.1038/ngeo419
      Jung, H., Fei, Y. W., Silver, P. G., et al., 2009. Frictional Sliding in Serpentine at very High Pressure. Earth and Planetary Science Letters, 277(1/2): 273-279. https://doi.org/10.1016/j.epsl.2008.10.019
      Jung, H., Green, H. W, 2004. Experimental Faulting of Serpentinite during Dehydration: Implications for Earthquakes, Seismic Low⁃Velocity Zones, and Anomalous Hypocenter Distributions in Subduction Zones. International Geology Review, 46(12): 1089-1102. https://doi.org/10.2747/0020⁃6814.46.12.1089
      Jung, H., Karato, S, 2001. Water⁃Induced Fabric Transitions in Olivine. Science, 293(5534): 1460-1463. https://doi.org/10.1126/science.1062235
      Karato, S. I, 2012. On the Origin of the Asthenosphere. Earth and Planetary Science Letters, 321/322: 95-103. https://doi.org/10.1016/j.epsl.2012.01.001
      Karato, S. I., Riedel, M. R., Yuen, D. A, 2001. Rheological Structure and Deformation of Subducted Slabs in the Mantle Transition Zone: Implications for Mantle Circulation and Deep Earthquakes. Physics of the Earth and Planetary Interiors, 127(1/2/3/4): 83-108. https://doi.org/10.1016/S0031⁃9201(01)00223⁃0
      Karato, S., Rubie, D, 1997. Toward an Experimental Study of Deep Mantle Rheology: a New Multianvil Sample Assembly for Deformation Studies under High Pressures and Temperatures. Journal of Geophysical Research, 102: 20111-20122. https://doi.org/10.1029/97JB01732
      Karato, S. I., 2008. Deformation of Earth Materials: An Introduction to the Rheology of Solid Earth. Cambridge University Press, Cambridge.
      Kawakatsu, H., Yoshioka, S, 2011. Metastable Olivine Wedge and Deep Dry Cold Slab beneath Southwest Japan. Earth and Planetary Science Letters, 303(1/2): 1-10. https://doi.org/10.1016/j.epsl.2011.01.008
      Kawazoe, T., Nishihara, Y., Ohuchi, T., et al., 2016. Creep Strength of Ringwoodite Measured at Pressure⁃Temperature Conditions of the Lower Part of the Mantle Transition Zone Using a Deformation⁃DIA Apparatus. Earth and Planetary Science Letters, 454: 10-19. https://doi.org/10.1016/j.epsl.2016.08.011
      Kelemen, P. B., Hirth, G, 2007. A Periodic Shear⁃Heating Mechanism for Intermediate⁃Depth Earthquakes in the Mantle. Nature, 446(7137): 787-790. https://doi.org/10.1038/nature05717
      Kie, T. T., Quan, S. Z., Hai, Y. Z., et al., 1989. Dilatancy, Creep and Relaxation of Brittle Rocks Measured with the 8000 kN Multipurpose Triaxial Apparatus. Physics of the Earth and Planetary Interiors, 55(3/4): 335-352. https://doi.org/10.1016/0031⁃9201(89)90081⁃2
      Kirby, S., Stein, S., Okal, E., et al., 1996. Metastable Mantle Phase Transformations and Deep Earthquakes in Subducting Oceanic Lithosphere. Reviews of Geophysics, 34: 261-306. https://doi.org/10.1029/96RG01050
      Kohlstedt, D., Holtzman, B, 2009. Shearing Melt out of the Earth: an Experimentalist's Perspective on the Influence of Deformation on Melt Extraction. Annual Review of Earth and Planetary Sciences, 37: 561-593. https://doi.org/10.1146/ANNUREV.EARTH.031208.100104
      Kohlstedt, D. L., Evans, B., Mackwell, S. J., 1995. Strength of the Lithosphere: Constraints Imposed by Laboratory Experiments. Journal of Geophysical Research: Solid Earth, 100(B9): 17587-17602. doi: 10.1029/95JB01460
      Li, J., Shao, T., Song, M., et al., 2021. Low⁃Temperature plasticity and Dislocation Creep of Fangshan Dolomite. Journal of Geophysical Research: Solid Earth, 126: e2020JB021439. https://doi.org/10.1029/2020JB021439.
      Li, L., Weidner, D., Raterron, P., et al., 2006. Deformation of Olivine at Mantle Pressure Using the D⁃DIA. European Journal of Mineralogy, 18: 7-19. doi: 10.1127/0935-1221/2006/0018-0007
      Lidaka, T., Suetsugu, D, 1992. Seismological Evidence for Metastable Olivine Inside a Subducting Slab. Nature, 356(6370): 593-595. https://doi.org/10.1038/356593a0
      Liu, G., Zhou, Y. S., Shi, Y. L., et al., 2017. Strength Variation and Deformational Behavior in Anisotropic Granitic Mylonites under High⁃Temperature and ⁃Pressure Conditions: an Experimental Study. Journal of Structural Geology, 96: 21-34. https://doi.org/10.1016/j.jsg.2017.01.003
      Liu, G., Zhou, Y., He, C., et al., 2016. An Experimental Study on Effect of Pre⁃Existing Fabric to Deformation of Foliated Mylonite under High Temperature and Pressure. Geological Journal, 51(1): 92-112. doi: 10.1002/gj.2611
      Lockner, D., Byerlee, J, 1977. Acoustic Emission and Creep in Rock at High Confining Pressure and Differential Stress. Bulletin of the Seismological Society of America, 67: 247-258. https://doi.org/10.1016/0148⁃9062%2878%2991004⁃5
      Mei, S., Kohlstedt, D., 2000. Influence of Water on Plastic Deformation of Olivine Aggregates: 1. Diffusion Creep Regime. Journal of Geophysical Research: Solid Earth, 105: 21457-21469. doi: 10.1029/2000JB900179
      Mei, S., Suzuki, A. M., Kohlstedt, D. L., et al., 2010. Experimental Constraints on the Strength of the Lithospheric Mantle. Journal of Geophysical Research: Solid Earth, 115: B08204.
      Merkel, S., Wenk, H. R., Shu, J., et al., 2002. Deformation of Polycrystalline MgO at Pressures of the Lower Mantle. Journal of Geophysical Research: Solid Earth, 107: 2271.
      Mierdel, K., Keppler, H., Smyth, J. R., et al., 2007. Water Solubility in Aluminous Orthopyroxene and the Origin of Earth's Asthenosphere. Science, 315(5810): 364-368. https://doi.org/10.1126/science.1135422
      Miyazaki, T., Sueyoshi, K., Hiraga, T, 2013. Olivine Crystals Align during Diffusion Creep of Earth's Upper Mantle. Nature, 502(7471): 321-326. https://doi.org/10.1038/nature12570
      Mohiuddin, A., Karato, S. I., Girard, J, 2020. Slab Weakening during the Olivine to Ringwoodite Transition in the Mantle. Nature Geoscience, 13(2): 170-174. https://doi.org/10.1038/s41561⁃019⁃0523⁃3
      Nakajima, J., Tsuji, Y., Hasegawa, A., et al., 2009. Tomographic Imaging of Hydrated Crust and Mantle in the Subducting Pacific Slab beneath Hokkaido, Japan: Evidence for Dehydration Embrittlement as a Cause of Intraslab Earthquakes. Gondwana Research, 16(3/4): 470-481. https://doi.org/10.1016/j.gr.2008.12.010
      Okazaki, K., Hirth, G, 2016. Dehydration of Lawsonite could Directly Trigger Earthquakes in Subducting Oceanic Crust. Nature, 530(7588): 81-84. https://doi.org/10.1038/nature16501
      Omori, S., Komabayashi, T., Maruyama, S, 2004. Dehydration and Earthquakes in the Subducting Slab: Empirical Link in Intermediate and Deep Seismic Zones. Physics of the Earth and Planetary Interiors, 146(1/2): 297-311. https://doi.org/10.1016/j.pepi.2003.08.014
      Paterson, M. S, 1970. A High⁃Pressure, High⁃Temperature Apparatus for Rock Deformation. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 7(5): 517-526. https://doi.org/10.1016/0148⁃9062(70)90004⁃5
      Paterson, M., 1990. Rock Deformation Experimentation. In: Duba, A. G., Durham, W. B., Handin, J. W., eds., The Brittle‐Ductile Transition in Rocks, American Geophysical Union, Washington, 187-194.
      Peacock, S, 2001. Are the Lower Planes of Double Seismic Zones Caused by Serpentine Dehydration in Subducting Oceanic Mantle. Geology, 29: 299-302. https://doi.org/10.1130/0091⁃7613%282001%29029%3C0299%3AATLPOD%3E2.0.CO%3B2
      Plümper, O., Botan, A., Los, C., et al., 2017. Fluid-Driven Metamorphism of the Continental Crust Governed by Nanoscale Fluid Flow. Nature Geoscience, 10(9): 685-690. https://doi.org/10.1038/ngeo3009
      Poirier, J. P., 1985. Creep of Crystals: High⁃Temperature Deformation Processes in Metals, Ceramics and Minerals. Cambridge University Press, Cambridge.
      Prieto, G. A., Florez, M., Barrett, S. A., et al., 2013. Seismic Evidence for Thermal Runaway during Intermediate‐Depth Earthquake Rupture. Geophysical Research Letters, 40: 6064-6068. doi: 10.1002/2013GL058109
      Proctor, B., Hirth, G, 2015. Role of Pore Fluid Pressure on Transient Strength Changes and Fabric Development during Serpentine Dehydration at Mantle Conditions: Implications for Subduction⁃Zone Seismicity. Earth and Planetary Science Letters, 421: 1-12. https://doi.org/10.1016/j.epsl.2015.03.040
      Reali, R., van Orman, J. A., Pigott, J. S., et al., 2019. The Role of Diffusion⁃Driven Pure Climb Creep on the Rheology of Bridgmanite under Lower Mantle Conditions. Scientific Reports, 9: 2053. https://doi.org/10.1038/s41598⁃018⁃38449⁃8
      Reynard, B., Nakajima, J., Kawakatsu, H, 2010. Earthquakes and Plastic Deformation of Anhydrous Slab Mantle in Double Wadat⁃Benioff Zones. Geophysical Research Letters, 37: L24309.
      Schubnel, A., Brunet, F., Hilairet, N., et al., 2013. Deep⁃Focus Earthquake Analogs Recorded at High Pressure and Temperature in the Laboratory. Science, 341(6152): 1377-1380. https://doi.org/10.1126/science.1240206
      Shen, Z., Zhan, Z., 2020. Metastable Olivine Wedge beneath the Japan Sea Imaged by Seismic Interferometry. Geophysical Research Letters, 47: e2019GL085665.
      Shao, T., Song, M., Li, J., et al., 2022a. Mechanical beHaviors of Intact Antigorite as Functions of Temperature: Faulting, Slow Stick⁃Slip and Stable Sliding. Journal of Structural Geology, 158: 104579. https://doi.org/10.1016/j.jsg.2022.104579
      Shao, T., Song, M., Ma, X., et al., 2022b. Potential Link between Antigorite Sehydration and Shallow Intermediate⁃Depth Earthquakes in Hot Subduction Zones. American Mineralogist. https://doi.org/102138/am⁃2021⁃8271
      Shao, T., Zhou, Y., Song, M., et al., 2021. Deformation of Antigorite and Its Geological Implications. Journal of Geophysical Research: Solid Earth, 126. https://doi.org/101029/2021JB021650.
      Shi, F., Wang, Y., Yu, T., et al., 2018. Lower⁃Crustal Earthquakes in Southern Tibet are Linked to Eclogitization of Dry Metastable Granulite. Nature Communications, 9: 3483. doi: 10.1038/s41467-018-05964-1
      Shi, F., Zhang, J., Xia, G., et al., 2015. Rheology of Mg2GeO4 Olivine and Spinel Harzburgite: Implications for Earth's Mantle Transition Zone. Geophysical Research Letters, 42: 2212-2218. https://doi.org/10.1002/2015GL063316
      Shi, Z. Q., Yu, Z. H., 1986. Development of 800t High Temperature and High Pressure Servo Triaxial Rheometer. Proceedings of the First Symposium on High Temperature and High Pressure Rock Mechanics, China Society of Rock Mechanics and Engineering, Beijing(in Chinese).
      Shiina, T., Nakajima, J., Matsuzawa, T., 2013. Seismic Evidence for High Pore Pressures in the Oceanic Crust: Implications for Fluid‐Related Embrittlement. Geophysical Research Letters, 40: 2006-2010. doi: 10.1002/grl.50468
      Sun, T. Z., 1989. Development of Solid Pressure Transmission Triaxial Rheometer. Abstracts of Papers of Institute of Geophysics, Chinese Academy of Sciences and Institute of Geophysics, Beijing(in Chinese).
      Song, M., Shao, T., Li, J., et al., 2014. Experimental Study of Deformation of Carrara Marble at High Pressure and High Temperature. Acta Petrologica Sinica, 30(2): 589-586.
      Tingle, T. N., Green, H. W., Young, T. E., et al., 1993. Improvements to Griggs⁃Type Apparatus for Mechanical Testing at High Pressures and Temperatures. Pure and Applied Geophysics, 141(2/3/4): 523-543. https://doi.org/10.1007/BF00998344
      Trampert, J., van Heijst, H. J, 2002. Global Azimuthal Anisotropy in the Transition Zone. Science, 296(5571): 1297-1299. https://doi.org/10.1126/science.1070264
      Tsuji, T., Iturrino, G. J, 2008. Velocity⁃Porosity Relationships in Oceanic Basalt from Eastern Flank of the Juan de Fuca Ridge: The Effect of Crack Closure on Seismic Velocity. Exploration Geophysics, 39(1): 41-51. https://doi.org/10.1071/EG08001
      Tsujino, N., Nishihara, Y., Yamazaki, D., et al., 2016. Mantle Dynamics Inferred from the Crystallographic Preferred Orientation of Bridgmanite. Nature, 539: 81-84. doi: 10.1038/nature19777
      Wang, Y. B., Durham, W., Getting, I. C., et al., 2003. The Deformation⁃DIA: a New Apparatus for High Temperature Triaxial Deformation to Pressures up to 15 GPa. Review of Scientific Instruments, 74: 3002-3011. https://doi.org/10.1063/1.1570948
      Wang, Y. B., Hilairet, N., Dera, P, 2010. Recent Advances in High Pressure and Temperature Rheological Studies. Journal of Earth Science, 21(5): 495-516. https://doi.org/10.1007/s12583⁃010⁃0124⁃y
      Wang, Y. B., Zhu, L. P., Shi, F., et al., 2017. A Laboratory Nanoseismological Study on Deep⁃Focus Earthquake Micromechanics. Science Advances, 3(7): e1601896. https://doi.org/10.1126/sciadv.1601896
      Wang, Y. F., Zhang, J. F., Jin, Z. M., et al., 2012. Mafic Granulite Rheology: Implications for a Weak Continental Lower Crust. Earth and Planetary Science Letters, 353/354: 99-107. https://doi.org/10.1016/j.epsl.2012.08.004
      Weidner, D. J., 1998. Rheological Studies at High Pressure. Reviews in Mineralogy and Geochemistry, 37: 493-524.
      Wen, D. P., Wang, Y. F., Zhang, J. F., et al., 2021. Rheology of Felsic Granulite at High Temperature and High Pressure. Journal of Geophysical Research: Solid Earth, 126: e2020JB020966.
      Wenk, H. R., Matthies, S., Hemley, R. J., et al., 2000. The Plastic Deformation of Iron at Pressures of the Earth's Inner Core. Nature, 405(6790): 1044-1047. https://doi.org/10.1038/35016558
      Wu, X., Lin, J. F., Kaercher, P., et al., 2017. Seismic Anisotropy of the D″ Layer Induced by (001) Deformation of Post⁃Perovskite. Nature Communications, 8: 14669. https://doi.org/10.1038/ncomms14669
      Xu, L. L., Mei, S. H., Dixon, N., et al., 2013. Effect of Water on Rheological Properties of Garnet at High Temperatures and Pressures. Earth and Planetary Science Letters, 379: 158-165. https://doi.org/10.1016/j.epsl.2013.08.002
      Zhan, Z., 2020. Mechanisms and Implications of Deep Earthquakes. Annual Review of Earth and Planetary Sciences, 48: 147-174. doi: 10.1146/annurev-earth-053018-060314
      Zhang, G., Mei, S., Song, M., 2020. Effect of Water on the Dislocation Creep of Enstatite Aggregates at 300 MPa. Geophysical Research Letters, 47: e2019GL085895.
      Zhang, G., Mei, S., Song, M., et al., 2017. Diffusion Creep of Enstatite at High Pressures under Hydrous Conditions. Journal of Geophysical Research: Solid Earth, 122: 7718-7728. doi: 10.1002/2017JB014400
      Zhang, J. F., Green, H. W. II, Bozhilov, K. N, 2006. Rheology of Omphacite at High Temperature and Pressure and Significance of Its Lattice Preferred Orientations. Earth and Planetary Science Letters, 246(3/4): 432-443. https://doi.org/10.1016/j.epsl.2006.04.006
      Zhang, J. F., Green, H. W., Bozhilov, K., et al., 2004. Faulting Induced by Precipitation of Water at Grain Boundaries in Hot Subducting Oceanic Crust. Nature, 428(6983): 633-636. https://doi.org/10.1038/nature02475
      Zhang, J. F., Jin, Z. M., 2013. Experimental Study on High Temperature and High Pressure Rheology under Deep Earth Conditions. In: Ding, Z. L., ed., Research Methods of Solid Earth Science. Scinece Press, Beijing, 995-1013(in Chinese).
      Zhang, J. F., Ni, H. W., Yang, X. Z., et al., 2021. Progress and Perspective of Experimental Geoscience in China (2011-2020). Bulletin of Mineralogy, Petrology and Geochemistry, 40(3): 597-609, 777(in Chinese with English abstract).
      Zhou, Y. S., Zhang, H. T., Yao, W. M., et al., 2017. An Experimental Study on Creep of Partially Molten Granulite under High Temperature and Wet Conditions. Journal of Asian Earth Sciences, 139: 15-29. https://doi.org/10.1016/j.jseaes.2016.10.011
      Zhou, Y., Rybacki, E., Wirth, R., et al., 2012. Creep of Partially Molten Fine⁃Grained Gabbro under Dry Conditions. Journal of Geophysical Research: Solid Earth, 117: B05204. https://doi.org/10.1029/2011JB008646.
      石泽全, 于智海, 1986. 800t高温高压伺服三轴流变仪的研制. 北京: 中国岩石力学与工程学会, 第一届高温高压岩石力学学术讨论会论文集.
      孙天泽, 1989. 固体传压三轴流变仪的研制. 北京: 中国科学院地球物理研究所, 中国科学院地球物理研究所论文摘要集.
      章军锋, 金振民, 2013. 地球深部条件下的高温高压流变学实验研究. 见: 丁仲礼, 编, 固体地球科学研究方法. 北京: 科学出版社, 995-1013.
      章军锋, 倪怀玮, 杨晓志, 等, 2021. 中国实验地球科学研究进展与展望(2011-2020). 矿物岩石地球化学通报, 40(3): 597-609, 777. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202103005.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(5)

      Article views (1263) PDF downloads(222) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return