Citation: | Ren Chanyue, Zhang Yifan, Li Zhengyang, Bao Zhenxin, Wang Guoqing, Liu Jianyu, 2023. Evaluation and Quantitative Attribution of Streamflow Trends over the Global Major River Basins. Earth Science, 48(9): 3518-3525. doi: 10.3799/dqkx.2022.330 |
Ahn, K. H., Merwade, V., 2014. Quantifying the Relative Impact of Climate and Human Activities on Streamflow. Journal of Hydrology, 515: 257-266. https://doi.org/10.1016/j.jhydrol.2014.04.062
|
Berghuijs, W. R., Larsen, J. R., van Emmerik, T. H. M., et al., 2017. A Global Assessment of Runoff Sensitivity to Changes in Precipitation, Potential Evaporation, and Other Factors. Water Resources Research, 53(10): 8475-8486. https://doi.org/10.1002/2017wr021593
|
Breiman, L., 2001. Random Forests. Machine Learning, 45(1): 5-32. https://doi.org/10.1023/A:1010933404324
|
Ceballos-Barbancho, A., Morán-Tejeda, E., Luengo-Ugidos, M. Á., et al., 2008. Water Resources and Environmental Change in a Mediterranean Environment: The South-West Sector of the Duero River Basin (Spain). Journal of Hydrology, 351(1-2): 126-138. https://doi.org/10.1016/j.jhydrol.2007.12.004
|
Chai, R. F., Chen, H. S., Sun, S. L., 2018. Attribution Analysis of Dryness/Wetness Change over China Based on SPEI. Journal of the Meteorological Sciences, 38(4): 423-431 (in Chinese with English abstract).
|
Chang, Q. X., Sun, Z., Y., Pan, Z., et al., 2022. Stream Runoff Formation and Hydrological Regulation Mechanism in Mountainous Alpine Regions: A Review. Earth Science, Online (in Chinese with English abstract).
|
Chen, Z. W., 2017. Spatio-Temporal Evolution of Runoff in China under Climate Change (Dissertation). Tsinghua University, Beijing, 48-59 (in Chinese with English abstract).
|
Gu, X. H., Zhang, Q., Li, J. F., et al., 2020. Impacts of Anthropogenic Warming and Uneven Regional Socio-Economic Development on Global River Flood Risk. Journal of Hydrology, 590: 125262. https://doi.org/10.1016/j.jhydrol.2020.125262
|
Hannaford, J., Buys, G., 2012. Trends in Seasonal River Flow Regimes in the UK. Journal of Hydrology, 475: 158-174. https://doi.org/10.1016/j.jhydrol.2012.09.044
|
Hao, Z. C., Li, L., Wang, J. H., et al., 2007. Impact of Climate Change on Surface Water Resources. Earth Science, 32(3): 425-432 (in Chinese with English abstract).
|
Li, Q., Wei, X. H., Zhang, M. F., et al., 2017. Forest Cover Change and Water Yield in Large Forested Watersheds: A Global Synthetic Assessment. Ecohydrology, 10(4): e1838. https://doi.org/10.1002/eco.1838
|
Li, T. S., Xia, J., 2018. Analysis of the Influence of Climate and Vegetation Change on Runoff in the Middle and Upper Reaches of the Pearl River Basin Based on Budyko Hypothesis. Advances in Earth Science, 33(12): 1248-1258 (in Chinese with English abstract).
|
Li, Z. X., He, Y. Q., Wen, Y. H., et al., 2010. Response of Runoff in High Altitude Area over the Typical Chinese Monsoonal Temperate Glacial Region to Climate Warming. Earth Science, 35(1): 43-50 (in Chinese with English abstract).
|
Liu, N., Harper, R. J., Smettem, K. R. J., et al., 2019. Responses of Streamflow to Vegetation and Climate Change in Southwestern Australia. Journal of Hydrology, 572: 761-770. https://doi.org/10.1016/j.jhydrol.2019.03.005
|
Musselman, K. N., Addor, N., Vano, J. A., et al., 2021. Winter Melt Trends Portend Widespread Declines in Snow Water Resources. Nature Climate Change, 11(5): 418-424. https://doi.org/10.1038/s41558-021-01014-9
|
Ning, T. T., Li, Z., Liu, W. Z., 2017. Vegetation Dynamics and Climate Seasonality Jointly Control the Interannual Catchment Water Balance in the Loess Plateau under the Budyko Framework. Hydrology and Earth System Sciences, 21(3): 1515-1526. https://doi.org/10.5194/hess-21-1515-2017
|
Rodell, M., Houser, P. R., Jambor, U., et al., 2004. The Global Land Data Assimilation System. Bulletin of the American Meteorological Society, 85(3): 381-394. https://doi.org/10.1175/bams-85-3-381
|
Stein, L., Clark, M. P., Knoben, W. J. M., et al., 2021. How do Climate and Catchment Attributes Influence Flood Generating Processes? A Large-Sample Study for 671 Catchments across the Contiguous USA. Water Resources Research, 57(4): e2020WR028300. https://doi.org/10.1029/2020WR028300
|
Sun, S. L., Chen, H. S., Ju, W. M., et al., 2014. On the Attribution of the Changing Hydrological Cycle in Poyang Lake Basin, China. Journal of Hydrology, 514: 214-225. https://doi.org/10.1016/j.jhydrol.2014.04.013
|
Teuling, A. J., de Badts, E. A. G., Jansen, F. A., et al., 2019. Climate Change, Reforestation/Afforestation, and Urbanization Impacts on Evapotranspiration and Streamflow in Europe. Hydrology and Earth System Sciences, 23(9): 3631-3652. https://doi.org/10.5194/hess-23-3631-2019
|
Wang, S., Fu, B. J., He, C. S., et al., 2011. A Comparative Analysis of Forest Cover and Catchment Water Yield Relationships in Northern China. Forest Ecology and Management, 262(7): 1189-1198. https://doi.org/10.1016/j.foreco.2011.06.013
|
Wei, X. H., Li, Q., Zhang, M. F., et al., 2018. Vegetation Cover—Another Dominant Factor in Determining Global Water Resources in Forested Regions. Global Change Biology, 24(2): 786-795. https://doi.org/10.1111/gcb.13983
|
Xia, J., Shi, W., 2016. Perspective on Water Security Issue of Changing Environment in China. Jaurnal of Hydraulic Engineering, 47(3): 292-301 (in Chinese with English abstract).
|
Yang, D. W., Zhang, S. L., Xu, X. Y., 2015. Attribution Analysis for Runoff Decline in Yellow River Basin during Past Fifty Years Based on Budyko Hypothesis. Scientia Sinica (Technologica), 45(10): 1024-1034 (in Chinese with English abstract). doi: 10.1360/N092015-00013
|
Yang, Y. T., Zhang, S. L., McVicar, T. R., et al., 2018. Disconnection between Trends of Atmospheric Drying and Continental Runoff. Water Resources Research, 54(7): 4700-4713. https://doi.org/10.1029/2018WR022593
|
Yuan, X., Jiao, Y., Yang, D. W., et al., 2018. Reconciling the Attribution of Changes in Streamflow Extremes from a Hydroclimate Perspective. Water Resources Research, 54(6): 3886-3895. https://doi.org/10.1029/2018WR022714
|
Zhou, G. Y., Wei, X. H., Luo, Y., et al., 2010. Forest Recovery and River Discharge at the Regional Scale of Guangdong Province, China. Water Resources Research, 46(9): W09503. https://doi.org/10.1029/2009WR008829
|
Zhou, S., Yu, B. F., Huang, Y. F., et al., 2015. The Complementary Relationship and Generation of the Budyko Functions. Geophysical Research Letters, 42(6): 1781-1790. https://doi.org/10.1002/2015GL063511
|
Zhu, Z. C., Bi, J., Pan, Y. Z., et al., 2013. Global Data Sets of Vegetation Leaf Area Index (LAI)3g and Fraction of Photosynthetically Active Radiation (FPAR)3g Derived from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) for the Period 1981 to 2011. Remote Sensing, 5(2): 927-948. https://doi.org/10.3390/rs5020927
|
柴荣繁, 陈海山, 孙善磊, 2018. 基于SPEI的中国干湿变化趋势归因分析. 气象科学, 38(4): 423-431 https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX201804001.htm
|
常启昕, 孙自永, 潘钊, 等, 2022. 高寒山区河道径流的形成与水文调节机制研究进展. 地球科学, 网络首发.
|
陈钟望, 2017. 气候变化下我国径流的时空演变(硕士学位论文). 北京: 清华大学, 48-59.
|
郝振纯, 李丽, 王加虎, 等, 2007. 气候变化对地表水资源的影响. 地球科学, 32(3): 425-432. http://www.earth-science.net/article/id/3471
|
李天生, 夏军, 2018. 基于Budyko理论分析珠江流域中上游地区气候与植被变化对径流的影响. 地球科学进展, 33(12): 1248-1258. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201812007.htm
|
李宗省, 何元庆, 温煜华, 等, 2010. 我国典型海洋型冰川区高海拔区输出水量变化对气候变暖的响应. 地球科学, 35(1): 43-50. doi: 10.3799/dqkx.2010.005
|
夏军, 石卫, 2016. 变化环境下中国水安全问题研究与展望. 水利学报, 47(3): 292-301. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201603007.htm
|
杨大文, 张树磊, 徐翔宇, 2015. 基于水热耦合平衡方程的黄河流域径流变化归因分析. 中国科学: 技术科学, 45(10): 1024-1034. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201510003.htm
|