• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 1
    Jan.  2024
    Turn off MathJax
    Article Contents
    Wang Jiahao, Pang Xiong, Wang Hua, Liu Baojun, Chen Xinxin, 2024. Tide Current-Reworked Sandy Submarine Fan Deposits in Miocene Zhujiang Formation, Baiyun Sag of Pearl River Mouth Basin. Earth Science, 49(1): 71-83. doi: 10.3799/dqkx.2022.334
    Citation: Wang Jiahao, Pang Xiong, Wang Hua, Liu Baojun, Chen Xinxin, 2024. Tide Current-Reworked Sandy Submarine Fan Deposits in Miocene Zhujiang Formation, Baiyun Sag of Pearl River Mouth Basin. Earth Science, 49(1): 71-83. doi: 10.3799/dqkx.2022.334

    Tide Current-Reworked Sandy Submarine Fan Deposits in Miocene Zhujiang Formation, Baiyun Sag of Pearl River Mouth Basin

    doi: 10.3799/dqkx.2022.334
    • Received Date: 2022-08-16
      Available Online: 2024-01-24
    • Publish Date: 2024-01-25
    • Recently increasingly-identified shallow marine fans and bottom current-reworking processes, which bought challenge on traditional knowledge such as the item of deep-water fan and Bouma Sequence, are needed for further research. The Baiyun Sag of Pearl River Mouth Basin is an important area for oil and gas exploration of submarine fans. The Miocene sequence SQ21 in this sag, whose base was dated as 21 Ma, is the main stratum hosting sandy submarine fans and petroleum discoveries, so was taken as the object in this study. Integrating core observation with analyses of well logging motifs, seismic reflection configurations and seismic geomorphology, this study revealed a large number of submarine fans in the falling stage and lowstand systems tracts of SQ21. The fans are constructed by gravity flow channels, levees and sheet lobes, corresponding to high-amplitude strips and lobate shapes, respectively, in seismic root mean square amplitude attribute maps. At the upper continental slope, the channels were deposited with mainly massive medium- to fine-grained sandstone and ripple-laminated fine-grained sandstone to siltstone, presenting upward-fining successions. They are characterized by cylindrical- to bell-shaped logging motifs, channel-infilling seismic reflections. Further, ripple-laminated sandstone to siltstone is intercalated with a lot of mudstone laminae partly illustrating single-clay and double-clay structures. This, together with abundant biological burrows, disturbance structure and siderite nodule, indicates that sea level greatly fell below shelf break. Consequently, the sandy submarine fan deposits, which were generated with their gravity flow channels at the upper continental slope, had been severely reworked by tide current, while shallow sea environment gradually occurred at the upper continental slope along with sea level greatly falling till below the shelf break. In this study, the application of seismic geomorphological analyses guarantees correct identification of the tidal current-reworked submarine fans. Moreover, it is suggested that the Bouma Sequence can be resulted from bottom current-reworking processes, and term of deep-water fan should not be overused.

       

    • loading
    • Bouma, A.H., 1962. Sedimentology of Some Flysch Deposits: A Graphic Approach to Facies Interpretation. Elsevier, Amsterdam, 264.
      Breien, H., de Blasio, F. V., Elverhoi, A., et al., 2010. Transport Mechanisms of Sand in Deep-Marine Environments: Insights Based on Laboratory Experiments. Journal of Sedimentary Research, 80(11): 975-990. https://doi.org/10.2110/jsr.2010.079
      Cai, L.L., Liu, C.C., Lü, M., et al., 2016. The Development Characteristics of Deep Water Channel and Sedimentary Reservoir Prediction in Lower Congo Basin, West Africa. China Offshore Oil and Gas, 28(2): 60-70 (in Chinese with English abstract).
      Catuneanu, O., 2006. Principles of Sequence Stratigraphy. Elsevier Science Ltd., Amsterdam, 105-245.
      Haq, B. U., Hardenbol, J., Vail, P. R., 1987. Chronology of Fluctuating Sea Levels since the Triassic. Science, 235(4793): 1156-1167. https://doi.org/10.1126/science.235.4793.1156
      He, W.J., Xie, J.Y., Liu, X.Y., et al., 2011. Foraminiferal Biostratigraphy and Sedimentary Environment Reconstruction Based on Paleontological Data from Bore Hole DF1-1-11, Yinggehai Basin. Journal of Stratigraphy, 35(1): 81-87 (in Chinese with English abstract).
      He, Y.B., Gao, Z.Z., Li, J.M., et al., 1998. Internal-Tide Deposits of the Late Ordovician in Tonglu, Zhejiang. Acta Sedimentologica Sinica, 16(1): 1-7 (in Chinese with English abstract).
      Huang, Y.T., Wen, L., Yao, G.Q., et al., 2018. Sedimentary Characteristics of Thick Fine-Grained Shallow-Marine Gravity Flow Deposits from Huangliu Formation in Dongfang Area, Yinggehai Basin, China. Acta Petrolei Sinica, 39(3): 290-303 (in Chinese with English abstract).
      Huang, Y.T., Yao, G.Q., Zhu, H.T., et al., 2016. Reworking of Gravity Flow Sandbody by Bottom-Current from Huangliu Formation in Dongfang Area of Yinggehai Basin, Northwestern South China Sea. Acta Petrolei Sinica, 37(7): 855-866 (in Chinese with English abstract).
      Li, Y., Zheng, R.C., Zhu, G.J., et al., 2012. Deep-Water Tractive Deposition in Zhujiang Formation Baiyun Sag, Zhujiang River Mouth Basin and Its Geological Implications. Acta Oceanologica Sinica, 34(1): 127-135 (in Chinese with English abstract).
      Liu, B.J., Pang, X., Wang, J.H., et al., 2019. Sedimentary System Response Process and Hydrocarbon Exploration Significance of Crust Thinning Zone at Extensional Continental Margin of Deep-Water Area in Pearl River Mouth Basin. Acta Petrolei Sinica, 40(S1): 124-138 (in Chinese with English abstract).
      Liu, B.J., Pang, X., Yan, C.Z., et al., 2011. Evolution of the Oligocene-Miocene Shelf Slope-Break Zone in the Baiyun Deep-Water Area of the Pearl River Mouth Basin and Its Significance in Oil-Gas Exploration. Acta Petrolei Sinica, 32(2): 234-242 (in Chinese with English abstract).
      Marr, J. G., Harff, P. A., Shanmugam, G., et al., 2001. Experiments on Subaqueous Sandy Gravity Flows: The Role of Clay and Water Content in Flow Dynamics and Depositional Structures. Geological Society of America Bulletin, 113(11): 1377-1386. https://doi.org/10.1130/0016-7606(2001)1131377: eossgf>2.0.co;2 doi: 10.1130/0016-7606(2001)113<1377:EOSSGF>2.0.CO;2
      Myrow, P. M., Hiscott, R. N., 1991. Shallow-Water Gravity-Flow Deposits, Chapel Island Formation, Southeast Newfoundland, Canada. Sedimentology, 38(5): 935-959. https://doi.org/10.1111/j.1365-3091.1991.tb01880.x
      Okay, S., Jupinet, B., Lericolais, G., et al., 2011. Morphological and Stratigraphic Investigation of a Holocene Subaqueous Shelf Fan, North of the İstanbul Strait in the Black Sea. Turkish Journal of Earth Sciences, 20: 287-305. https://doi.org/10.3906/yer-1001-16
      Pang, X., Zhu, M., Liu, B.J., et al., 2014. The Mechanism of Gravity Flow Deposition in Baiyun Sag Deepwater Area of the Northern South China Sea. Acta Petrolei Sinica, 35(4): 646-653 (in Chinese with English abstract).
      Posamentier, H. W., Kolla, V., 2003. Seismic Geomorphology and Stratigraphy of Depositional Elements in Deep-Water Settings. Journal of Sedimentary Research, 73(3): 367-388. https://doi.org/10.1306/111302730367
      Posamentier, H.W., Walker, R.G., 2006. Deep-Water Turbidites and Submarine Fans. In: Posamentier, H.W., Walker, R.G., eds., Facies Models Revisited. Society for Sedimentary Geology, Tulsa, 397-520.
      Qin, G.Q., 1996. Application of Microfossils in the Study of Sequence Stratigraphy in the Late Cenozoic in the Pearl River Mouth Basin. Marine Geology & Quaternary Geology, 16(4): 1-18 (in Chinese with English abstract).
      Shanmugam, G., 1996. High-Density Turbidity Currents: Are They Sandy Debris Flows? Journal of Sedimentary Research, 66(1): 2-10. https://doi.org/10.1306/d426828e-2b26-11d7-8648000102c1865d doi: 10.1306/D426828E-2B26-11D7-8648000102C1865D
      Shanmugam, G., 2000. 50 Years of the Turbidite Paradigm (1950s-1990s): Deep-Water Processes and Facies Models—A Critical Perspective. Marine and Petroleum Geology, 17(2): 285-342. https://doi.org/10.1016/S0264-8172(99)00011-2
      Shanmugam, G., 2012. New Perspective on Deep-Water Sandstones: Origin, Recognition, Initiation, and Reservoir Quality. Handbook of Petroleum Exploration and Production. Elsevier, Amsterdam, 524.
      Shepard, F. P., Marshall, N. F., McLoughlin, P. A., et al., 1978. Currents in Submarine Canyons and Other Seavalleys. AAPG Studies in Geology, 8: 1-13.
      Shi, H.S., He, M., Zhang, L.L., et al., 2014. Hydrocarbon Geology, Accumulation Pattern and the Next Exploration Strategy in the Eastern Pearl River Mouth Basin. China Offshore Oil and Gas, 26(3): 11-22 (in Chinese with English abstract).
      Tokuhashi, S., 1996. Shallow-Marine Turbiditic Sandstones Juxtaposed with Deep-Marine Ones at the Eastern Margin of the Niigata Neogene Backarc Basin, Central Japan. Sedimentary Geology, 104(1-4): 99-116. https://doi.org/10.1016/0037-0738(95)00123-9
      Vail, P.R., 1992. The Evolution of Seismic Stratigraphy and the Global Sea-Level Curve. In: Dott, R.H. Jr., ed., Eustasy: The Historical Ups and Downs of a Major Geological Concept. Geological Society of America Memoir, 180: 83-91.
      Villa, E., Bahamonde, J.R., 2001. Accumulations of Ferganites (Fusulinacea) in Shallow Turbidite Deposits from the Carboniferous of Spain. The Journal of Foraminiferal Research, 31(3): 173-190. https://doi.org/10.2113/31.3.173
      Walker, R. G., 1978. Deep-Water Sandstone Facies and Ancient Submarine Fans: Models for Exploration for Stratigraphic Traps. AAPG Bulletin, 62: 932-966. https://doi.org/10.1306/c1ea4f77-16c9-11d7-8645000102c1865d
      Wang, H., Chen, S., Gan, H.J., et al., 2015. Accumulation Mechanism of Large Shallow Marine Turbidite Deposits: A Case Study of Gravity Flow Deposits of the Huangliu Formation in Yinggehai Basin. Earth Science Frontiers, 22(1): 21-34 (in Chinese with English abstract).
      Wang, J., Luan, X.W., He, B.S., et al., 2021. Characteristics and Genesis of Faults in Southwestern Pearl River Mouth Basin, Northern South China Sea. Earth Science, 46(3): 916-928 (in Chinese with English abstract).
      Wang, J. H., Guan, Z. L., la Croix, A. D., et al., 2020. Seismic Geomorphology of Shallow-Water Lacustrine Deltas in the Paleocene Huanghua Depression, Bohai Bay Basin, Eastern China. Marine and Petroleum Geology, 120: 104561. https://doi.org/10.1016/j.marpetgeo.2020.104561
      Wang, J. H., Pang, X., Liu, B. J., et al., 2018. The Baiyun and Liwan Sags: Two Supradetachment Basins on the Passive Continental Margin of the Northern South China Sea. Marine and Petroleum Geology, 95: 206-218. https://doi.org/10.1016/j.marpetgeo.2018.05.001
      Wang, J. H., Xie, X. N., Pang, X., et al., 2017. Storm-Reworked Shallow-Marine Fans in the Middle Triassic Baise Area, South China. Sedimentary Geology, 349: 33-45. https://doi.org/10.1016/j.sedgeo.2016.12.007
      Wu, J., Zhang, X.Z., Bai, H.J., et al., 2021. Miocene Tidal Control System and Its Exploration Significance of Lithologic Trap in Yangjiang Sag, Pearl River Mouth Basin. Earth Science, 46(10): 3673-3689 (in Chinese with English abstract).
      Yang, H.J., Guo, S.S., Liu, B., et al., 2013. Gravity Flow and Internal Wave and Internal Tide Deposits in Upper Miocene of SE Area, Yinggehai Basin. Petroleum Geology & Experiment, 35(6): 626-633 (in Chinese with English abstract).
      Zhou, W., Gao, X. Z., Wang, Y. M., et al., 2015a. Seismic Geomorphology and Lithology of the Early Miocene Pearl River Deepwater Fan System in the Pearl River Mouth Basin, Northern South China Sea. Marine and Petroleum Geology, 68: 449-469. https://doi.org/10.1016/j.marpetgeo.2015.09.006
      Zhou, W., Wang, Y. M., Gao, X. Z., et al., 2015b. Architecture, Evolution History and Controlling Factors of the Baiyun Submarine Canyon System from the Middle Miocene to Quaternary in the Pearl River Mouth Basin, Northern South China Sea. Marine and Petroleum Geology, 67: 389-407. https://doi.org/10.1016/j.marpetgeo.2015.05.015
      蔡露露, 刘春成, 吕明, 等, 2016. 西非下刚果盆地深水水道发育特征及沉积储层预测. 中国海上油气, 28(2): 60-70.
      何卫军, 谢金有, 刘新宇, 等, 2011. 莺歌海盆地DF1-1-11井有孔虫生物地层与沉积环境研究. 地层学杂志, 35(1): 81-87.
      何幼斌, 高振中, 李建明, 等, 1998. 浙江桐庐晚奥陶世内潮汐沉积. 沉积学报, 16(1): 1-7.
      黄银涛, 文力, 姚光庆, 等, 2018. 莺歌海盆地东方区黄流组细粒厚层重力流砂体沉积特征. 石油学报, 39(3): 290-303.
      黄银涛, 姚光庆, 朱红涛, 等, 2016. 莺歌海盆地东方区黄流组重力流砂体的底流改造作用. 石油学报, 37(7): 855-866.
      李云, 郑荣才, 朱国金, 等, 2012. 珠江口盆地白云凹陷珠江组深水牵引流沉积特征及其地质意义. 海洋学报(中文版), 34(1): 127-135.
      柳保军, 庞雄, 王家豪, 等, 2019. 珠江口盆地深水区伸展陆缘地壳减薄背景下的沉积体系响应过程及油气勘探意义. 石油学报, 40(S1): 124-138.
      柳保军, 庞雄, 颜承志, 等, 2011. 珠江口盆地白云深水区渐新世‒新世陆架坡折带演化及油气勘探意义. 石油学报, 32(2): 234-242.
      庞雄, 朱明, 柳保军, 等, 2014. 南海北部珠江口盆地白云凹陷深水区重力流沉积机理. 石油学报, 35(4): 646-653.
      秦国权, 1996. 微体古生物在珠江口盆地新生代晚期层序地层学研究中的应用. 海洋地质与第四纪地质, 16(4): 1-18.
      施和生, 何敏, 张丽丽, 等, 2014. 珠江口盆地(东部)油气地质特征、成藏规律及下一步勘探策略. 中国海上油气, 26(3): 11-22.
      王华, 陈思, 甘华军, 等, 2015. 浅海背景下大型浊积扇研究进展及堆积机制探讨: 以莺歌海盆地黄流组重力流为例. 地学前缘, 22(1): 21-34.
      王嘉, 栾锡武, 何兵寿, 等, 2021. 南海北部珠江口盆地西南段断裂特征与成因讨论. 地球科学, 46(3): 916–928. doi: 10.3799/dqkx.2020.381
      吴静, 张晓钊, 白海军, 等, 2021. 珠江口盆地阳江凹陷中新统潮控体系及其岩性圈闭勘探意义. 地球科学, 46(10): 3673-3689. doi: 10.3799/dqkx.2021.017
      杨红君, 郭书生, 刘博, 等, 2013. 莺歌海盆地SE区上中新统重力流与内波内潮汐沉积新认识. 石油实验地质, 35(6): 626-633.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(11)

      Article views (688) PDF downloads(90) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return