• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 3
    Mar.  2023
    Turn off MathJax
    Article Contents
    Wang Qiuxia, Ping Xianquan, Zheng Jianping, Dai Hongkun, 2023. Mineral Ferric Iron Contents of Peridotite Xenoliths by Mössbauer Spectroscopy: Oxygen Fugacity Applications. Earth Science, 48(3): 1217-1231. doi: 10.3799/dqkx.2022.354
    Citation: Wang Qiuxia, Ping Xianquan, Zheng Jianping, Dai Hongkun, 2023. Mineral Ferric Iron Contents of Peridotite Xenoliths by Mössbauer Spectroscopy: Oxygen Fugacity Applications. Earth Science, 48(3): 1217-1231. doi: 10.3799/dqkx.2022.354

    Mineral Ferric Iron Contents of Peridotite Xenoliths by Mössbauer Spectroscopy: Oxygen Fugacity Applications

    doi: 10.3799/dqkx.2022.354
    • Received Date: 2022-06-02
      Available Online: 2023-03-27
    • Publish Date: 2023-03-25
    • The redox state of the lithospheric mantle can be estimated by well equilibrated mineral pairs of mantle peridotite xenoliths. Here we explore the mantle redox state of the northwest North China Craton by measuring the mineral Fe3+/∑Fe of the Langshan spinel lherzolite xenoliths using the newly established lab of WSS-10 Mössbauer spectroscopy at China University of Geosciences (Wuhan). The results show that the Fe3+/∑Fe ratios are 0.05-0.11 for orthopyroxene, 0.16-0.25 for clinopyroxene, 0.16-0.22 for spinel, and no Fe3+ was confirmed in olivine. The corresponding mantle oxygen fugacity using the olivine-orthopyroxene-spinel oxy-barometry is FMQ-0.82 to FMQ-0.39 (averaged at FMQ-0.65), slightly higher than the estimates using electron microprobe data (FMQ-1.49 to FMQ-0.8, averaged at FMQ-1.25). This discrepancy may be explained by the non-stoichiometry Fe3+ excess and cation vacancies in the spinel lattice, which is generally ignored in the stoichinometric calculation using electron microprobe data. Compared with global cratonic mantle (averaged at FMQ-0.35), the lithospheric mantle underneath the northwest North China Craton, represent by Langshan mantle xenoliths, is relatively reduced, and likely results from metasomatism by low-fO2 melts from deeper mantle domains.

       

    • loading
    • Ballhaus, C., Berry, R. F., Green, D. H., 1991. High Pressure Experimental Calibration of the Olivine-Orthopyroxene-Spinel Oxygen Geobarometer: Implications for the Oxidation State of the Upper Mantle. Contributions to Mineralogy and Petrology, 107(1): 27-40. https://doi.org/10.1007/BF00311183
      Bénard, A., Woodland, A. B., Arculus, R. J., et al., 2018. Variation in Sub-Arc Mantle Oxygen Fugacity during Partial Melting Recorded in Refractory Peridotite Xenoliths from the West Bismarck Arc. Chemical Geology, 486: 16-30. https://doi.org/10.1016/j.chemgeo.2018.03.004
      Brandon, A. D., Draper, D. S., 1996. Constraints on the Origin of the Oxidation State of Mantle Overlying Subduction Zones: An Example from Simcoe, Washington, USA. Geochimica et Cosmochimica Acta, 60(10): 1739-1749. https://doi.org/10.1016/0016-7037(96)00056-7
      Brey, G. P., Köhler, T., 1990. Geothermobarometry in Four-Phase Lherzolites Ⅱ. New Thermobarometers, and Practical Assessment of Existing Thermobarometers. Journal of Petrology, 31(6): 1353-1378. https://doi.org/10.1093/petrology/31.6.1353
      Bryndzia, L. T., Wood, B. J., 1990. Oxygen Thermobarometry of Abyssal Spinel Peridotites: The Redox State and C-O-H Volatile Composition of the Earth's Sub-Oceanic Upper Mantle. American Journal of Science, 290(10): 1093-1116. https://doi.org/10.2475/ajs.290.10.1093
      Canil, D., O'neill, H. S. C., 1996. Distribution of Ferric Iron in Some Upper-Mantle Assemblages. Journal of Petrology, 37(3): 609-635. https://doi.org/10.1093/petrology/37.3.609
      Canil, D., O'Neill, H. S. C., Pearson, D. G., et al., 1994. Ferric Iron in Peridotites and Mantle Oxidation States. Earth and Planetary Science Letters, 123(1-3): 205-220. https://doi.org/10.1016/0012-821X(94)90268-2
      Canil, D., Virgo, D., Scarfe, C. M., 1990. Oxidation State of Mantle Xenoliths from British Columbia, Canada. Contributions to Mineralogy and Petrology, 104(4): 453-462. https://doi.org/10.1007/BF01575622
      Chen, X., Zheng, J. P., 2009. Mineral Chemistry of Peridotite Xenoliths in Yangyuan Cenozoic Basalts: Significance for Lithospheric Mantle Evolution Beneath the North China Craton. Earth Science, 34(1): 203-219 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-2383.2009.01.018
      Chen, Y. D., Pearson, N. J., O'Reilly, S. Y., et al., 1991. Applications of Olivine-Orthopyroxene-Spinel Oxygen Geobarometers to the Redox State of the Upper Mantle. Journal of Petrology, Special_Volume(2): 291-306. https://doi.org/10.1093/petrology/Special_Volume.2.291
      Chen, Y., Hu, Z. C., Jia, L. H., et al., 2021. Progress of Microbeam Analytical Technologies in the Past Decade(2011-2020)and Prospect. Bulletin of Mineralogy, Petrology and Geochemistry, 40(1): 1-35 (in Chinese with English abstract).
      Christie, D. M., Carmichael, I. S. E., Langmuir, C. H., 1986. Oxidation States of Mid-Ocean Ridge Basalt Glasses. Earth and Planetary Science Letters, 79(3-4): 397-411. https://doi.org/10.1016/0012-821X(86)90195-0
      Cottrell, E., Lanzirotti, A., Mysen, B., et al., 2018. A Mössbauer-Based XANES Calibration for Hydrous Basalt Glasses Reveals Radiation-Induced Oxidation of Fe. American Mineralogist, 103(4): 489-501. https://doi.org/10.2138/am-2018-6268
      Dai, H. K., Zheng, J. P., 2019. Mantle Xenoliths and Host Basalts Record the Paleo-Asian Oceanic Materials in the Mantle Wedge Beneath Northwest North China Craton. Solid Earth Sciences, 4(4): 150-158. https://doi.org/10.1016/j.sesci.2019.09.001
      Dai, H. K., Zheng, J. P., Griffin, W. L., et al., 2020. Pyroxenite Xenoliths Record Complex Melt Impregnation in the Deep Lithosphere of the Northwestern North China Craton. Journal of Petrology, 62(2): egaa079. https://doi.org/10.1093/petrology/egaa079
      Dai, H. K., Zheng, J. P., Xiong, Q., et al., 2019. Fertile Lithospheric Mantle Underlying Ancient Continental Crust Beneath the Northwestern North China Craton: Significant Effect from the Southward Subduction of the Paleo–Asian Ocean. GSA Bulletin, 131(1-2): 3-20. https://doi.org/10.1130/b31871.1
      Dai, L. D., Karato, S. I., 2014. Influence of Oxygen Fugacity on the Electrical Conductivity of Hydrous Olivine: Implications for the Mechanism of Conduction. Physics of the Earth and Planetary Interiors, 232: 57-60. https://doi.org/10.1016/j.pepi.2014.04.003
      Darby, B. J., Ritts, B. D., 2007. Mesozoic Structural Architecture of the Langshan, North-Central China: Intraplate Contraction, Extension, and Synorogenic Sedimentation. Journal of Structural Geology, 29: 2006-2016. https://doi.org/10.1016/j.jsg.2007.06.011
      Dasgupta, R., Mallik, A., Tsuno, K., et al., 2013. Carbon-Dioxide-Rich Silicate Melt in the Earth's Upper Mantle. Nature, 493(7431): 211-215. https://doi.org/10.1038/nature11731
      Davis, F. A., Cottrell, E., Birner, S. K., et al., 2017. Revisiting the Electron Microprobe Method of Spinel-Olivine-Orthopyroxene Oxybarometry Applied to Spinel Peridotitesk. American Mineralogist, 102(2): 421-435. https://doi.org/10.2138/am-2017-5823
      Dyar, M. D., Agresti, D. G., Schaefer, M. W., et al., 2006. Mössbauer Spectroscopy of Earth and Planetary Materials. Annual Review of Earth and Planetary Sciences, 34: 83-125. https://doi.org/10.1146/annurev.earth.34.031405.125049
      Dyar, M. D., McGuire, A. V., Ziegler, R. D., 1989. Redox Equilibria and Crystal Chemistry of Coexisting Minerals from Spinel Lherzolite Mantle Xenoliths. American Mineralogist, 74(9-10): 969-980.
      Fang, T. H., Ma, H. W., 1998. Ferric Iron Contents of Mantle Xenolith Minerals by Mössbauer Spectroscopy and Its Implications to Calculated Temperature Pressure and Oxygen Fugacity. Geoscience, 12(2): 197-203 (in Chinese with English abstract).
      Feng, F., Xu, Z. Y., Dong, X. J., et al., 2021. Chronology, Geochemistry and Hf Isotope of Granite Porphyry in Wenduermiao-Jining Area, Inner Mongolia and Its Geological Significance. Earth Science, 46(6): 1973-1992 (in Chinese with English abstract).
      Feng, J. Y., Xiao, W. J., Windley, B., et al., 2013. Field Geology, Geochronology and Geochemistry of Mafic-Ultramafic Rocks from Alxa, China: Implications for Late Permian Accretionary Tectonics in the Southern Altaids. Journal of Asian Earth Sciences, 78: 114-142. https://doi.org/10.1016/j.jseaes.2013.01.020
      Frost, B. R., 1991. Introduction to Oxygen Fugacity and Its Petrologic Importance. In: Lindsley, D. H., ed., Volume 25: Oxide Minerals: Petrologic and Magnetic Significance. Stony Brook, New York.
      Frost, D. J., McCammon, C. A., 2008. The Redox State of Earth's Mantle. Annual Review of Earth and Planetary Sciences, 36: 389-420. https://doi.org/10.1146/annurev.earth.36.031207.124322
      Ghiorso, M. S., Evans, B. W., 2008. Thermodynamics of Rhombohedral Oxide Solid Solutions and a Revision of the Fe-Ti Two-Oxide Geothermometer and Oxygen-Barometer. American Journal of Science, 308(9): 957-1039. https://doi.org/10.2475/09.2008.01
      Goncharov, A. G., Ionov, D. A., Doucet, L. S., et al., 2012. Thermal State, Oxygen Fugacity and C-O-H Fluid Speciation in Cratonic Lithospheric Mantle: New Data on Peridotite Xenoliths from the Udachnaya Kimberlite, Siberia. Earth and Planetary Science Letters, 357-358: 99-110. https://doi.org/10.1016/j.epsl.2012.09.016
      Hao, X. L., Li, Y. L., 2013. 57Fe Mössbauer Spectroscopy of Mineral Assemblages in Mantle Spinel Lherzolites from Cenozoic Alkali Basalt, Eastern China: Petrological Applications. Lithos, 156-159: 112-119. https://doi.org/10.1016/j.lithos.2012.10.016
      Ionov, D. A., Wood, B. J., 1992. The Oxidation State of Subcontinental Mantle: Oxygen Thermobarometry of Mantle Xenoliths from Central Asia. Contributions to Mineralogy and Petrology, 111(2): 179-193. https://doi.org/10.1007/BF00348950
      Kress, V. C., Carmichael, I. S. E., 1991. The Compressibility of Silicate Liquids Containing Fe2O3 and the Effect of Composition, Temperature, Oxygen Fugacity and Pressure on Their Redox States. Contributions to Mineralogy and Petrology, 108(1-2): 82-92. https://doi.org/10.1007/BF00307328
      Kumar, A., Singh, M. R., Sarma, P. R., et al., 1989. Optimised Thickness of Diffusive Mössbauer Absorbers. Journal of Physics D: Applied Physics, 22(3): 465–466. https://doi.org/10.1088/0022-3727/22/3/015
      Li, J. P., Wang, J., 2002. Mantle Redox State Evolution in Eastern China and Its Implications. Acta Geologica Sinica - English Edition, 76(2): 238-248. https://doi.org/10.1111/j.1755-6724.2002.tb00089.x
      Li, J. P., Zhang, S., 2002. Redox State of Amphibole-Bearing Mantle Peridotite from Nüshan, Anhui Province in Eastern China and Its Implications. Science in China (Series D), 45(4): 348-357. https://doi.org/10.1360/02yd9036
      Li, S. K., Liu, X. L., Lu, Y. X., et al., 2022. Indication of Zircon Oxygen Fugacity to Different Mineralization Control Factors of Porphyry Deposits in Zhongdian Ore-Concentrated Area, Southern Yidun Arc. Earth Science, 47(4): 1435-1458 (in Chinese with English abstract).
      Li, X. L., Tao, R. B., Li, Q. Y., et al., 2019. Microprobe Analysis of Ferric Iron in Garnet: The Flank Method and Case Application. Acta Petrologica Sinica, 35(4): 1058-1070 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.04.05
      Li, X. Y., Zhang, C., Behrens, H., et al., 2020. Calculating Biotite Formula from Electron Microprobe Analysis Data Using a Machine Learning Method Based on Principal Components Regression. Lithos, 356-357: 105371. https://doi.org/10.1016/j.lithos.2020.105371
      Li, Z., Ying, Y. P., 1996. Mössbauer Spectroscopy of Minerals. Science Press, Beijing (in Chinese).
      Linnen, R. L., Pichavant, M., Holtz, F., et al., 1995. The Effect of fO2 on the Solubility, Diffusion, and Speciation of Tin in Haplogranitic Melt at 850 ℃ and 2 kbar. Geochimica et Cosmochimica Acta, 59(8): 1579-1588. https://doi.org/10.1016/0016-7037(95)00064-7
      Liu, C. Q., Li, H. P., Huang, Z. L., et al., 2001. A Review of Studies on Oxygen Fugacity of the Earth Mantle. Earth Science Frontiers, 8(3): 73-82 (in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2001.03.009
      Liu, J. L., Li, H. B., Wang, J., et al., 2021. Characteristics of Oxygen Fugacity of Mantle Peridotites in the Northern Xing'an-Mongolia Orogenic Belt. Acta Petrologica Sinica, 37(7): 2073-2085 (in Chinese with English abstract). doi: 10.18654/1000-0569/2021.07.07
      Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. https://doi.org/10.1093/petrology/egp082
      Luth, R. W., Canil, D., 1993. Ferric Iron in Mantle-Derived Pyroxenes and a New Oxybarometer for the Mantle. Contributions to Mineralogy and Petrology, 113(2): 236-248. https://doi.org/10.1007/BF00283231
      Mattioli, G. S., Wood, B. J., 1988. Magnetite Activities across the MgAl2O4-Fe3O4 Spinel Join, with Application to Thermobarometric Estimates of Upper Mantle Oxygen Fugacity. Contributions to Mineralogy and Petrology, 98(2): 148-162. https://doi.org/10.1007/BF00402108
      McCammon, C., Kopylova, M. G., 2004. A Redox Profile of the Slave Mantle and Oxygen Fugacity Control in the Cratonic Mantle. Contributions to Mineralogy and Petrology, 148(1): 55-68. https://doi.org/10.1007/s00410-004-0583-1
      McGuire, A. V., Dyar, M. D., Nielson, J. E., 1991. Metasomatic Oxidation of Upper Mantle Periodotite. Contributions to Mineralogy and Petrology, 109(2): 252-264. https://doi.org/10.1007/BF00306483
      McGuire, A. V., Dyar, M. D., Ward, K. A., 1989. Neglected Fe3+/Fe2+ Ratios: A Study of Fe3+ Content of Megacrysts from Alkali Basalts. Geology, 17(8): 687. https://doi.org/10.1130/0091-7613(1989)0170687: nffras>2.3.co;2 doi: 10.1130/0091-7613(1989)0170687:nffras>2.3.co;2
      Nell, J., Wood, B. J., 1991. High-Temperature Electrical Measurements and Thermodynamic Properties of Fe3O4-FeCr2O4-MgCr2O4-FeAl2O4 Spinels. American Mineralogist, 76(3-4): 405-426.
      Nikitina, L. P., Goncharov, A. G., Saltykova, A. K., et al., 2010. The Redox State of the Continental Lithospheric Mantle of the Baikal-Mongolia Region. Geochemistry International, 48(1): 15-40. https://doi.org/10.1134/s0016702910010027
      O'Neill, H. S. C., 1987. The Quartz-Fayalite-Iron and Quartz-Fayalite- Magnetite Equilibria and the Free Energies of Formation of Fayalite (Fe2SiO4) and Magnetite (Fe3O4). American Mineralogist, 72: 67-75.
      Quintiliani, M., 2006. Fe2+ and Fe3+ Quantification by Different Approaches and fO2 Estimation for Albanian Cr-Spinels. American Mineralogist, 91(5-6): 907-916. https://doi.org/10.2138/am.2006.2000
      Sack, R. O., Carmichael, I. S. E., Rivers, M., et al., 1981. Ferric-Ferrous Equilibria in Natural Silicate Liquids at 1 Bar. Contributions to Mineralogy and Petrology, 75(4): 369-376. https://doi.org/10.1007/BF00374720
      Sobolev, V. N., McCammon, C. A., Taylor, L. A., et al., 1999. Precise Mössbauer Milliprobe Determination of Ferric Iron in Rock-Forming Minerals and Limitations of Electron Microprobe Analysis. American Mineralogist, 84(1-2): 78-85. https://doi.org/10.2138/am-1999-1-208
      Stagno, V., Ojwang, D. O., McCammon, C. A., et al., 2013. The Oxidation State of the Mantle and the Extraction of Carbon from Earth's Interior. Nature, 493(7430): 84-88. https://doi.org/10.1038/nature11679
      Sun, W. D., Wang, J. T., Zhang, L. P., et al., 2017. The Formation of Porphyry Copper Deposits. Acta Geochimica, 36(1): 9-15. https://doi.org/10.1007/s11631-016-0132-4
      Tao, R. B., Zhang, L. F., Liu, X., 2015. Oxygen Fugacity of Earth's Mantle and Deep Carbon Cycle in the Subduction Zone. Acta Petrologica Sinica, 31(7): 1879-1890 (in Chinese with English abstract).
      Wanamaker, B. J., Duba, A. G., 1992. The Thermoelectric Power (Seebeck Coefficient) of San Carlos Olivine as a Function of Oxygen Fugacity and Silica Activity. Transactions-American Geophysical Union, 73: 66.
      Wang, J., Hattori, K. H., Kilian, R., et al., 2007. Metasomatism of Sub-Arc Mantle Peridotites below Southernmost South America: Reduction of fO2 by Slab-Melt. Contributions to Mineralogy and Petrology, 153(5): 607-624. https://doi.org/10.1007/s00410-006-0166-4
      Wang, J., Hattori, K. H., Li, J. P., et al., 2008. Oxidation State of Paleozoic Subcontinental Lithospheric Mantle below the Pali Aike Volcanic Field in Southernmost Patagonia. Lithos, 105(1-2): 98-110. https://doi.org/10.1016/j.lithos.2008.02.009
      Wang, J., Hattori, K., Xie, Z. P., 2013. Oxidation State of Lithospheric Mantle along the Northeastern Margin of the North China Craton: Implications for Geodynamic Processes. International Geology Review, 55(11): 1418-1444. https://doi.org/10.1080/00206814.2013.780722
      Wang, J., Hattori, K., Xu, W. L., et al., 2012. Origin of Ultramafic Xenoliths in High-Mg Diorites from East-Central China Based on Their Oxidation State and Abundance of Platinum Group Elements. International Geology Review, 54(10): 1203-1218. https://doi.org/10.1080/00206814.2011.628206
      Wells, P. R. A., 1977. Pyroxene Thermometry in Simple and Complex Systems. Contributions to Mineralogy and Petrology, 62(2): 129-139. https://doi.org/10.1007/BF00372872
      Wood, B. J., Bryndzia, L. T., Johnson, K. E., 1990. Mantle Oxidation State and Its Relationship to Tectonic Environment and Fluid Speciation. Science, 248(4953): 337-345. https://doi.org/10.1126/science.248.4953.337
      Wood, B. J., Virgo, D., 1989. Upper Mantle Oxidation State: Ferric Iron Contents of Iherzolite Spinels by 57Fe Mössbauer Spectroscopy and Resultant Oxygen Fugacities. Geochimica et Cosmochimica Acta, 53(6): 1277-1291. https://doi.org/10.1016/0016-7037(89)90062-8
      Woodland, A. B., Kornprobst, J., Tabit, A., 2006. Ferric Iron in Orogenic Lherzolite Massifs and Controls of Oxygen Fugacity in the Upper Mantle. Lithos, 89(1-2): 222-241. https://doi.org/10.1016/j.lithos.2005.12.014
      Woodland, A. B., Kornprobst, J., Wood, B. J., 1992. Oxygen Thermobarometry of Orogenic Lherzolite Massifs. Journal of Petrology, 33(1): 203-230. https://doi.org/10.1093/petrology/33.1.203
      Woodland, A. B., Peltonen, P., 1998. Ferric/Ferrous Iron Contents of Garnet and Clinopyroxene and Calculated Oxygen Fugacities of Peridotite Xenoliths from the Eastern Finland Kimberlite Province. International Kimberlite Conference, Cape Town.
      Wu, D., Liu, Y. S., Chen, C. F., et al., 2017. In-Situ Trace Element and Sr Isotopic Compositions of Mantle Xenoliths Constrain Two-Stage Metasomatism Beneath the Northern North China Craton. Lithos, 288-289: 338-351. https://doi.org/10.1016/j.lithos.2017.07.018
      Xiao, W. J., Windley, B. F., Sun, S., et al., 2015. A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion. Annual Review of Earth and Planetary Sciences, 43: 477-507. https://doi.org/10.1146/annurev-earth-060614-105254
      Yang, Q. F., Wang, J., Hattori, K. H., et al., 2011. Redox State of the Lithospheric Mantle Beneath Huinan-Jingyu Area, Southern Jilin Province, China. Acta Petrologica Sinica, 27(6): 1797-1809 (in Chinese with English abstract).
      Ye, C. Y., Ying, J. F., Tang, Y. J., et al., 2021. Oxygen Fugacity Evolution of the Mantle Lithosphere Beneath the North China Craton. International Geology Review, 1-16. https://doi.org/10.1080/00206814.2021.2015630
      Yu, C. M., 2009. Ages of Peridotitic Xenoliths from the Central and Eastern Areas of North China Craton and Mantle Heterogeneity (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Zhang, B. F., 1991. Mössbauer Spectroscopy. Tianjin University Publishing House, Tianjin (in Chinese).
      Zhang, C., Almeev, R. R., Hughes, E. C., et al., 2018. Electron Microprobe Technique for the Determination of Iron Oxidation State in Silicate Glasses. American Mineralogist, 103(9): 1445-1454. https://doi.org/10.2138/am-2018-6437
      Zhang, F. L., Yi, F., Chen, Y. L., et al., 1997. Determination of the Optimum Thickness of an Absorber in Mossbauer Spectroscopy. Journal of Wuhan University (Natural Science Edition), 43(3): 348-352 (in Chinese with English abstract).
      Zheng, J. P., Griffin, W. L., O'Reilly, S. Y., et al., 2007. Mechanism and Timing of Lithospheric Modification and Replacement Beneath the Eastern North China Craton: Peridotitic Xenoliths from the 100 Ma Fuxin Basalts and a Regional Synthesis. Geochimica et Cosmochimica Acta, 71(21): 5203-5225. https://doi.org/10.1016/j.gca.2007.07.028
      Zheng, J. P., Griffin, W. L., O'Reilly, S. Y., et al., 2005. Late Mesozoic-Eocene Mantle Replacement Beneath the Eastern North China Craton: Evidence from the Paleozoic and Cenozoic Peridotite Xenoliths. International Geology Review, 47(5): 457-472. https://doi.org/10.2747/0020-6814.47.5.457
      Zheng, J. P., O'reilly, S. Y., Griffin, W. L., et al., 1998. Nature and Evolution of Cenozoic Lithospheric Mantle Beneath Shandong Peninsula, Sino-Korean Craton, Eastern China. International Geology Review, 40(6): 471-499. https://doi.org/10.1080/00206819809465220
      Zheng, J. P., O'Reilly, S. Y., Griffin, W. L., et al., 2001. Relict Refractory Mantle Beneath the Eastern North China Block: Significance for Lithosphere Evolution. Lithos, 57(1): 43-66. https://doi.org/10.1016/S0024-4937(00)00073-6
      Zhou, Y. T., Zheng, J. P., Yu, C. M., et al., 2010. Peridotite Xenoliths in Jining Cenozoic Basalts: Mineral-Chemistry and Significance for Lithospheric Mantle Evolution Beneath the North China Craton. Acta Perologica et Mineralogica, 29(3): 243-257 (in Chinese with English abstract).
      陈曦, 郑建平, 2009. 河北阳原新生代玄武岩中橄榄岩捕虏体矿物化学: 华北岩石圈地幔演化. 地球科学, 34(1): 203-219. http://www.earth-science.net/article/id/1798
      陈意, 胡兆初, 贾丽辉, 等, 2021. 微束分析测试技术十年(2011—2020)进展与展望. 矿物岩石地球化学通报, 40(1): 1-35. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202101004.htm
      方同辉, 马鸿文, 1998. 辽宁宽甸地幔矿物三价铁的穆斯堡尔谱测定及意义. 现代地质, 12(2): 197-203. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ802.007.htm
      冯帆, 徐仲元, 董晓杰, 等, 2021. 内蒙古温都尔庙‒集宁地区花岗斑岩年代学、地球化学、Hf同位素特征及其地质意义. 地球科学, 46(6): 1973-1992. doi: 10.3799/dqkx.2020.007
      李守奎, 刘学龙, 卢映祥, 等, 2022. 锆石氧逸度对义敦岛弧南段中甸矿集区斑岩型矿床差异性成矿控制因素的指示. 地球科学, 47(4): 1435-1458. doi: 10.3799/dqkx.2021.079
      李小犁, 陶仁彪, 李清云, 等, 2019. 石榴子石Fe3+含量电子探针原位分析: Flank Method方法的实例应用. 岩石学报, 35(4): 1058-1070. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201904005.htm
      李哲, 应育浦, 1996. 矿物穆斯堡尔谱学. 北京: 科学出版社.
      刘丛强, 李和平, 黄智龙, 等, 2001. 地幔氧逸度的研究进展. 地学前缘, 8(3): 73-82. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200103010.htm
      刘金霖, 李怀滨, 王建, 等, 2021. 兴蒙造山带北部岩石圈地幔橄榄岩氧逸度特征研究. 岩石学报, 37(7): 2073-2085. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202107007.htm
      陶仁彪, 张立飞, 刘曦, 2015. 地幔氧逸度与俯冲带深部碳循环. 岩石学报, 31(7): 1879-1890. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201507006.htm
      杨清福, 王建, Hattori, K. H., 等, 2011. 吉林南部辉南‒靖宇地区岩石圈地幔氧化‒还原状态及研究意义. 岩石学报, 27(6): 1797-1809. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201106019.htm
      余淳梅, 2009. 华北克拉通中东部典型地区橄榄岩捕虏体年龄及地幔不均一性(博士学位论文). 武汉: 中国地质大学.
      张宝峰, 1991. 穆斯堡尔谱学. 天津: 天津大学出版社,
      张富良, 易凡, 陈义龙, 等, 1997. 穆斯堡尔谱学中样品最佳厚度的确定. 武汉大学学报(自然科学版), 43(3): 348-352. https://www.cnki.com.cn/Article/CJFDTOTAL-WHDY703.012.htm
      周媛婷, 郑建平, 余淳梅, 等, 2010. 内蒙古集宁新生代玄武岩中橄榄岩包体矿物化学特征及其地幔演化意义. 岩石矿物学杂志, 29(3): 243-257. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201003002.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)

      Article views (1983) PDF downloads(116) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return