Citation: | Jiang Shu, Zhang Tianyu, Guo Tonglou, He Xipeng, Gao Yuqiao, Xue Gang, Zhang Peixian, Chen Guohui, 2023. Comparison of Enrichment Characteristics of Typical Normally-Pressured Shale Gas Reservoirs in Lower Silurian Shale in Southeastern Sichuan Basin and Devonian Shales in Appalachian Basin. Earth Science, 48(1): 77-91. doi: 10.3799/dqkx.2022.356 |
Blakey, R. C., Fielding, C. R., 2008. Gondwana Palaeogeography from Assembly to Break Up—A 500 M. y. Odyssey. Geological Society of America Special Papers, 441: 1-28. https://doi.org/10.1130/2008.2441(01)
|
Castle, J. W., 2001. Appalachian Basin Stratigraphic Response to Convergent-Margin Structural Evolution. Basin Research, 13(4): 397-418. https://doi.org/10.1046/j.0950-091x.2001.00157.x
|
Energy Information Administration, 2022. Drilling Productivity Report: For Key Tight Oil and Shale Gas Regions. EIA Independent Statistics & Analysis, Washington.
|
Engelder, T., Lash, G. G., Uzcátegui, R. S., 2009. Joint Sets that Enhance Production from Middle and Upper Devonian Gas Shales of the Appalachian Basin. AAPG Bulletin, 93(7): 857-889. https://doi.org/10.1306/03230908032
|
Ettensohn, F. R., 2008. The Appalachian Foreland Basin in Eastern United States. Sedimentary Basins of the World, 5: 105-179. https://doi.org/10.1016/S1874-5997(08)00004-X
|
Gao, H. Q., Ding, A. X., Chen, Y. Y., 2017. Discussion on the Rules of Gas Desorption and Occurrence Mode in Shales. Geological Journal of China Universities, 23(2): 285-295 (in Chinese with English abstract).
|
Guo, T. L., Jiang, S., Zhang, P. X., et al., 2020. Progress and Direction of Exploration and Development of Normally-Pressured Shale Gas from the Periphery of Sichuan Basin. Petroleum Geology & Experiment, 42(5): 837-845 (in Chinese with English abstract).
|
Hao, F., Zou, H. Y., Lu, Y. C., 2013. Mechanisms of Shale Gas Storage: Implications for Shale Gas Exploration in China. AAPG Bulletin, 97(8): 1325-1346. https://doi.org/10.1306/02141312091
|
He, X. P., Gao, Y. Q., He, G. S., et al., 2021. Geological Characteristics and Key Technologies for Exploration and Development of Nanchuan Shale Gas Field in Southeast Chongqing. Petroleum Reservoir Evaluation and Development, 11(3): 305-316 (in Chinese with English abstract).
|
He, X. P., Wang, Y. H., Wang, Y. Q., et al., 2020. Exploration Practices of Normal-Pressure Shale Gas in the Marginal Transition Zone of the Southeast Sichuan Basin. China Petroleum Exploration, 25(1): 126-136 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2020.01.012
|
Hill, D. G., Nelson, C. R., 2000. Gas Productive Fractured Shales: An Overview and Update. Gas Tips, 6(2): 4-13.
|
Huang, J. Z., 1980. An Attempt to Identify Kerogen Types with Stable Carbon Isotope δC13 Values. Petroleum Geology & Experiment, 2(2): 49-54 (in Chinese).
|
Jiang, S., Tang, X. L., Osborne, S., et al., 2017. Enrichment Factors and Current Misunderstanding of Shale Oil and Gas: Case Study of Shales in US, Argentina and China. Earth Science, 42(7): 1083-1091 (in Chinese with English abstract).
|
Jiang, T. X., Bian, X. B., Zhang, L. S., et al., 2020. Atmospheric Shale Gas Fracturing Theory and Practice. Science Press, Beijing (in Chinese).
|
Jiang, Z. X., Song, Y., Tang, X. L., et al., 2020. Controlling Factors of Marine Shale Gas Differential Enrichment in Southern China. Petroleum Exploration and Development, 47(3): 617-628 (in Chinese with English abstract).
|
Liu, C. Q., Jiang, X. F., 2021. 2020 Domestic and Foreign Oil and Gas Industry Development Report. Petroleum Industry Press, Beijing (in Chinese).
|
Ma, L., Chen, H. J., Gan, K. W., et al., 2004. Tectonic and Marine Oil and Gas Geology in Southern China. Geological Publishing House, Beijing (in Chinese).
|
Mei, L. F., Liu, Z. Q., Tang, J. G., et al., 2010. Mesozoic Intra-Continental Progressive Deformation in Western Hunan-Hubei-Eastern Sichuan Provinces of China: Evidence from Apatite Fission Track and Balanced Cross-Section. Earth Science, 35(2): 161-174 (in Chinese with English abstract).
|
Mi, H. Y., Hu, M., Feng, Z. D., et al., 2010. Present Conditions and Exploration Prospects of Shale Gas Resource in China. Complex Hydrocarbon Reservoirs, 3(4): 10-13 (in Chinese with English abstract). doi: 10.3969/j.issn.1674-4667.2010.04.003
|
Miall, A. D., Blakey, R. C., 2019. The Phanerozoic Tectonic and Sedimentary Evolution of North America. In: Miall, A. D., ed., The Sedimentary Basins of the United States and Canada. Elsevier, Amsterdam. https://doi.org/10.1016/b978-0-444-63895-3.00001-2
|
Nelson, P. H., Gianoutsos, N. J., 2011. Evolution of Overpressured and Underpressured Oil and Gas Reservoirs, Anadarko Basin of Oklahoma, Texas, and Kansas. Open-File Report. U. S. Geological Survey, Denver.
|
Nie, H. K., Wang, H., He, Z. L., et al., 2019. Formation Mechanism, Distribution and Exploration Prospect of Normal Pressure Shale Gas Reservoir: A Case Study of Wufeng Formation-Longmaxi Formation in Sichuan Basin and Its Periphery. Acta Petrolei Sinica, 40(2): 131-143, 164 (in Chinese with English abstract).
|
Nuttall, B. C., Drahovzal, A. J., Eble, C. F., et al., 2005. CO2 Sequestration in Gas Shales of Kentucky. Search & Discovery, 6: 16-19.
|
Qiu, K. G., 2013. Tectonic Evolution and Sedimentary Characteristics of Foreland Basin in North America (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
|
Ran, B., Liu, S. G., Jansa, L., et al., 2016. Reservoir Characteristics and Preservation Conditions of Longmaxi Shale in the Upper Yangtze Block, South China. Acta Geologica Sinica (English Edition), 90(6): 2182-2205. https://doi.org/10.1111/1755-6724.13030
|
Roen, J. B., 1984. Geology of the Devonian Black Shales of the Appalachian Basin. Organic Geochemistry, 5(4): 241-254. https://doi.org/10.1016/0146-6380(84)90011-1
|
Ruppert, L. F., Trippi, M. H., Kinney, S. A., 2015. Coal and Petroleum Resources in the Appalachian Basin—Index Maps of Included Studies. Professional Paper. U. S. Geological Survey, Reston.
|
Song, L. S., Martin, K., Carr, T. R., et al., 2019. Porosity and Storage Capacity of Middle Devonian Shale: A Function of Thermal Maturity, Total Organic Carbon, and Clay Content. Fuel, 241: 1036-1044. https://doi.org/10.1016/j.fuel.2018.12.106
|
Wang, X., 2015. Structural Characteristics and Shale Gas Preservation Conditions of Lower Paleozoic Shale Series in Southeastern Chongqing (Dissertation). Southwest Petroleum University, Chengdu (in Chinese with English abstract).
|
Wang, Y. F., Zhai, G. Y., Liu, G. H., et al., 2021. Geological Characteristics of Shale Gas in Different Strata of Marine Facies in South China. Journal of Earth Science, 32(4): 725-741. https://doi.org/10.1007/s12583-020-1104-5
|
Wei, Z. H., 2015. Late Fugitive Emission of Shale Gas from Wufeng-Longmaxi Formation in Sichuan Basin and Its Periphery. Oil & Gas Geology, 36(4): 659-665 (in Chinese with English abstract).
|
Wu, Y. Y., Zhang, P. X., He, X. P., et al., 2020. Lithofacies and Shale Gas Enrichment of Wufeng Formation-Longmaxi Formation in Southeastern Chongqing. Marine Origin Petroleum Geology, 25(4): 335-343 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-9854.2020.04.006
|
Yang, F., Ning, Z. F., Zhang, R., et al., 2015. Investigations on the Methane Sorption Capacity of Marine Shales from Sichuan Basin, China. International Journal of Coal Geology, 146: 104-117. https://doi.org/10.1016/j.coal.2015.05.009
|
Yang, Z., Zou, C. N., 2019. "Exploring Petroleum inside Source Kitchen": Connotation and Prospects of Source Rock Oil and Gas. Petroleum Exploration and Development, 46(1): 173-184 (in Chinese with English abstract).
|
Yang, Z., Zou, C. N., Wu, S. T., et al., 2021. From Source Control Theory to Source-Reservoir Symbiosis System: On the Theoretical Understanding and Practice of Source Rock Strata Oil and Gas Geology in China. Acta Geologica Sinica, 95(3): 618-631 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2021.03.002
|
Yang, Z., Zou, C. N., Wu, S. T., et al., 2022. Reservoir Fracturing or Hydrocarbon Generating? —On the Reservoir and Source Rock Properties of Source Rock Strata Oil and Gas. Acta Geologica Sinica, 96(1): 183-194 (in Chinese with English abstract).
|
Yost, A. B., Frohne, K. H., Komar, C. A., et al., 1982. Techniques to Determine Natural and Induced Fracture Relationships in Devonian Shale. Journal of Petroleum Technology, 34(6): 1371-1377. https://doi.org/10.2118/9271-pa
|
Yu, B. S., 2012. Particularity of Shale Gas Reservoir and Its Evaluation. Earth Science Frontiers, 19(3): 252-258 (in Chinese with English abstract).
|
Zagorski, W. A., Wrightstone, G. R., Bowman, D. C., 2012. The Appalachian Basin Marcellus Gas Play: Its History of Development, Geologic Controls on Production, and Future Potential as a World-Class Reservoir. AAPG Memoir, 97: 172-200.
|
Zeng, Y., Hou, Y. G., Hu, D. F., et al., 2022. Characteristics of Shale Fracture Veins and Paleo-Pressure Evolution in Normal Pressure Shale Gas Zone, Southeast Margin of Sichuan Basin. Earth Science, 47(5): 1819-1833 (in Chinese with English abstract).
|
Zhang, D. W, Li, Y. X, Zhang, J. C., et al., 2012. National Survey and Evaluation of Shale Gas Resource Potential. Geological Publishing House, Beijing (in Chinese).
|
Zhang, H. T., Zhang, Y., He, X. P., et al., 2018. The Effect of Tectonism on Shale Gas Formation and Preservation in Wulong Area, Southeastern Chongqing. China Petroleum Exploration, 23(5): 47-56 (in Chinese with English abstract).
|
Zou, C. N., Yang, Z., Dong, D. Z., et al., 2022. Formation, Distribution and Prospect of Unconventional Hydrocarbons in Source Rock Strata in China. Earth Science, 47(5): 1517-1533 (in Chinese with English abstract).
|
高和群, 丁安徐, 陈云燕, 2017. 页岩气解吸规律及赋存方式探讨. 高校地质学报, 23(2): 285-295.
|
郭彤楼, 蒋恕, 张培先, 等, 2020. 四川盆地外围常压页岩气勘探开发进展与攻关方向. 石油实验地质, 42(5): 837-845. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202005021.htm
|
何希鹏, 高玉巧, 何贵松, 等, 2021. 渝东南南川页岩气田地质特征及勘探开发关键技术. 油气藏评价与开发, 11(3): 305-316. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202103005.htm
|
何希鹏, 王运海, 王彦祺, 等, 2020. 渝东南盆缘转换带常压页岩气勘探实践. 中国石油勘探, 25(1): 126-136. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202001012.htm
|
黄籍中, 1980. 用稳定碳同位素δC13值识别干酪根类型的尝试. 石油实验地质, 2(2): 49-54. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD198002007.htm
|
蒋恕, 唐相路, Osborne, S., 等, 2017. 页岩油气富集的主控因素及误辩: 以美国、阿根廷和中国典型页岩为例. 地球科学, 42(7): 1083-1091. doi: 10.3799/dqkx.2017.087
|
蒋廷学, 卞晓冰, 张龙胜, 等, 2020. 常压页岩气压裂理论与实践. 北京: 科学出版社.
|
姜振学, 宋岩, 唐相路, 等, 2020. 中国南方海相页岩气差异富集的控制因素. 石油勘探与开发, 47(3): 617-628. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202003020.htm
|
刘朝全, 姜学峰, 2021.2020年国内外油气行业发展报告. 北京: 石油工业出版社.
|
马力, 陈焕疆, 甘克文, 等, 2004. 中国南方大地构造和海相油气地质. 北京: 地质出版社.
|
梅廉夫, 刘昭茜, 汤济广, 等, 2010. 湘鄂西‒川东中生代陆内递进扩展变形: 来自裂变径迹和平衡剖面的证据. 地球科学, 35(2): 161-174. doi: 10.3799/dqkx.2010.017
|
米华英, 胡明, 冯振东, 等, 2010. 我国页岩气资源现状及勘探前景. 复杂油气藏, 3(4): 10-13. https://www.cnki.com.cn/Article/CJFDTOTAL-FZYQ201004006.htm
|
聂海宽, 汪虎, 何治亮, 等, 2019. 常压页岩气形成机制、分布规律及勘探前景——以四川盆地及其周缘五峰组‒龙马溪组为例. 石油学报, 40(2): 131-143, 164. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201902001.htm
|
邱开国, 2013. 北美前陆盆地的构造演化与沉积特征(硕士学位论文). 北京: 中国地质大学.
|
汪星, 2015. 渝东南地区下古生界页岩层系构造特征与页岩气保存条件研究(硕士学位论文). 成都: 西南石油大学.
|
魏志红, 2015. 四川盆地及其周缘五峰组‒龙马溪组页岩气的晚期逸散. 石油与天然气地质, 36(4): 659-665. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201504017.htm
|
吴聿元, 张培先, 何希鹏, 等, 2020. 渝东南地区五峰组‒龙马溪组页岩岩石相及与页岩气富集关系. 海相油气地质, 25(4): 335-343. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ202004006.htm
|
杨智, 邹才能, 2019. "进源找油": 源岩油气内涵与前景. 石油勘探与开发, 46(1): 173-184. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201901018.htm
|
杨智, 邹才能, 吴松涛, 等, 2021. 从源控论到源储共生系统——论源岩层系油气地质理论认识及实践. 地质学报, 95(3): 618-631. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202103002.htm
|
杨智, 邹才能, 吴松涛, 等, 2022. 造缝产烃还是改质造烃?——论含油气源岩层系的储集层属性和烃源岩属性. 地质学报, 96(1): 183-194. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202201012.htm
|
于炳松, 2012. 页岩气储层的特殊性及其评价思路和内容. 地学前缘, 19(3): 252-258. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201203027.htm
|
曾宇, 侯宇光, 胡东风, 等, 2022. 川东南盆缘常压区页岩裂缝脉体特征及古压力演化. 地球科学, 47(5): 1819-1833. doi: 10.3799/dqkx.2022.011
|
张大伟, 李玉喜, 张金川, 等, 2012. 全国页岩气资源潜力调查评价. 北京: 地质出版社.
|
张海涛, 张颖, 何希鹏, 等, 2018. 渝东南武隆地区构造作用对页岩气形成与保存的影响. 中国石油勘探, 23(5): 47-56. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201805006.htm
|
邹才能, 杨智, 董大忠, 等, 2022. 非常规源岩层系油气形成分布与前景展望. 地球科学, 47(5): 1517-1533. doi: 10.3799/dqkx.2022.160
|