• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 8
    Aug.  2023
    Turn off MathJax
    Article Contents
    Ma Liangtao, Fan Tingen, Cai Wentao, Gao Yunfeng, Wang Zongjun, He Rongsheng, 2023. Prediction Method and Its Application of Relative High⁃Quality Reservoir Distribution in Low⁃Permeability Reservoir Dominated by Hierarchical Architecture. Earth Science, 48(8): 2947-2959. doi: 10.3799/dqkx.2022.377
    Citation: Ma Liangtao, Fan Tingen, Cai Wentao, Gao Yunfeng, Wang Zongjun, He Rongsheng, 2023. Prediction Method and Its Application of Relative High⁃Quality Reservoir Distribution in Low⁃Permeability Reservoir Dominated by Hierarchical Architecture. Earth Science, 48(8): 2947-2959. doi: 10.3799/dqkx.2022.377

    Prediction Method and Its Application of Relative High⁃Quality Reservoir Distribution in Low⁃Permeability Reservoir Dominated by Hierarchical Architecture

    doi: 10.3799/dqkx.2022.377
    • Received Date: 2022-11-23
    • Publish Date: 2023-08-25
    • Underwater distributary channel sand body of fan deltaic front, the main reservoir for L1V oil group in K oil field, characterized by thin sand body, strong heterogeneity, low porosity and low permeability. At present, there are some problems in the oilfield development and production, such as slow diffusion of injected water and difficulty in energy supplement, unclear effectiveness of some water injection in some blocks, and limited scope of water flooding and so on. It's difficult to solve these problems just based on traditional Predominant sedimentary facies anlysis, especially to the low permeability reservoir. In this paper, one method was proposed to predict relatively high quality distribution in low permeability reservoirs dominated by different levels of architecture. Firstly, Based on optimized seismic data, the internal reservoir architecture boundaries are detected and classified, adopting mathematical morphology analysis method. Besides, different levels of reservoir architecture are analyzed in L1V oil formation. Secondly, constrained by composite channel reservoir architecture analysis, the distribution of dominant sedimentary facies belt for Channl⁃1 and Channel⁃2 are researched in L1V oil group, applying neural network clustering method. Finally, combined with dominant sedimentary facies belt and channel architecture boundary, which characterizes the connectivity of single stage channel sand body, relatively high quality reservoirs for low permeability reservoirs in the study area are optimized. The result shows that 1) for L1V oil formation, reservoir architecture boundaries are divided into 3 categories and 5 subcategories, including fault, composite channel and single channel belt, with different characteristics in sand body connectivity and seismic reflection; 2) it develops three composite channel in L1V oil formation, including Channel⁃1, Channel⁃2, Channel⁃3 with near N⁃S trending. Besides, sedimentary microfacies for each composite channel includes underwater distributary channel, inter⁃channel and levee. Among them, fan delta front underwater distributary channel is a high⁃quality reservoir facies belt with pretty porosity and permeability; 3) Based on the dominant sedimentary facies belt, combined with the reservoir architecture boundary characteristics, high⁃quality reservoirs for composite channel in the L1V oil group can be divided into two types. The method in this paper can improve the prediction accuracy of high quality reservoir in low⁃permeability reservoirs and guide inter well sand body connectivity and remaining oil potential area analysis. That will be beneficial to effectively avoid development risk in the oilfield development comprehensive adjustment stage and improve the economic benefits.

       

    • loading
    • Cao, Y. C., Yang, T., Song, M. S., et al., 2018. Characteristics of Low-Permeability Clastic Reservoirs and Genesis of Relatively High-Quality Reservoirs in the Continental Rift Lake Basin: a Case Study of Paleogene in the Dongying Sag, Jiyang Depression. Acta Petrolei Sinica, 39(7): 727-743(in Chinese with English abstract).
      Chen, L., Li, S. S., You, J. J., et al., 2019. Quantitative Evaluation and Application of Factors Affecting the Properties of Low Permeability Reservoirs from the Paleogene in Wenchang B Sag. Geological Science and Technology Information, 38(3): 165-173(in Chinese with English abstract).
      Cui, M. M., Li, J. B., Wang, Z. X., et al., 2019. Characteristics of Tight Sand Reservoir and Controlling Factors of High-Quality Reservoir at Braided Delta Front: a Case Study from Member 8 of Shihezi Formation in Southwestern Sulige Gas Field. Acta Petrolei Sinica, 40(3): 279-294(in Chinese with English abstract).
      Deng, C. W., Li, L. H., Jin, Y. J., et al., 2008. Application of Seismic Waveform Classification in Predicting Sedimentary Microfacies. Geophysical Prospecting for Petroleum, 47(3): 262-265, 18(in Chinese with English abstract).
      Feng, C. J., Bao, Z. D., Dai, C. M., et al., 2015. Superimposition Patterns of Underwater Distributary Channel Sands in Deltaic Front and Its Control on Remaining Oil Distribution: a Case Study from K1q4 in J19 Block, Fuyu Oilfield. Oil & Gas Geology, 36(1): 128-135(in Chinese with English abstract).
      Du, D. F., Guo, Q. Q., Zheng, Y., et al., 2018. Superposition of Sandstone Formations and Patterns in Residual Oil Distribution. Special Oil & Gas Reservoirs, 25(4): 62-66(in Chinese with English abstract).
      Ji, T. t., Zhang, W., Ren, H., et al., 2015. Application of Spectral Bluing Frequency-Broadening Technique in Chunguang Block. Unconventional Oil & Gas, 2(3): 22-26(in Chinese with English abstract).
      Jing, Y. Q., Fan, H. J., Chen, F., et al., 2014. Application of Waveform Classification in the Prediction of Fluvial Facies Interbedded Sandstone Reservoirs. Progress in Geophysics, 29(3): 1163-1167(in Chinese with English abstract).
      Li, H., Luo, B., He, X. T., et al., 2017. Boundary Identification and Prediction of Sand Body Based on Seismic Waveform. Chinese Journal of Engineering Geophysics, 14(5): 573-577(in Chinese with English abstract).
      Li, J. D., Sun, L., Wei, S. J., et al., 2019. "Sweet Spot" Prediction and Its Application in the Low Permeability Reservoir of the Deep HG Formation in the East China Sea. Geophysical Prospecting for Petroleum, 58(5): 758-765(in Chinese with English abstract). http://www.sciengine.com/doi/pdf/8D0CAAF9D0AD43869A104ACC4EC32550
      Li, X. B., Zhao, J. J., Jin, J. L., et al., 2020. Pre-Stack Spectrum Blueing Frequency Increasing Technique: a Case Study on Reservoir Prediction in Chad Baob Oilfield. Oil Geophysical Prospecting, 55(6): 1343-1348, 1166(in Chinese with English abstract).
      Liu, J. W., Gao, Q. J., Shi, T., 2016. Application of Spectral Bluing Frequence Technology in Reservoir Prediction of Dawangzhuang Area. Complex Hydrocarbon Reservoirs, 9(1): 31-34(in Chinese with English abstract).
      Liu, J. K., Sun, Y. L., Jiao, X., et al., 2016. The Genesis of Low Permeability of High-Quality Reservoirs in Deep-Buried Clastic Rock Reservoirs and Its Development Mechanism: a Case Study of Es2 Formation in the Slope Area of Qikou Sag. Natural Gas Geoscience, 27(5): 799-808(in Chinese with English abstract).
      Lu, H., Wang, Q. B., Niu, C. M., et al., 2020. Meteoric Leaching Evidences, Diagenetic Model and Its Geology Significance in Mixed Rock of Steep Slope Zone of Shijiutuo Uplift. Earth Science, 45(10): 3721-3730(in Chinese with English abstract).
      Lu, Y. J., Cao, J. X., Liu, Z. G., et al., 2019. Application of Waveform Classification Technology for Fluid Identification in Fractured-Vuggy Reservoir. Acta Petrolei Sinica, 40(2): 182-189(in Chinese with English abstract).
      Qin, D. W., Hou, Z. Q., Jiang, Y., et al., 2015. The Application of Poisson Dampening Factor to Inspection of High Porosity Sandstone. Chinese Journal of Engineering Geophysics, 12(2): 190-193(in Chinese with English abstract).
      Tang, H. F., Wang, P. J., Jiang, C. J., et al., 2007. Application of Waveform Classification to Identify Volcanic Facies in Songliao Basin. Oil Geophysical Prospecting, 42(4): 440-444, 488, 359(in Chinese with English abstract).
      Tao, Q. Q., Sun, W. Z., Li, S. S., et al., 2017. Application of Fan Delta Facies "Sweet Point" Reservoir Prediction Technology in Weizhou a Oilfield. Geological Science and Technology Information, 36(6): 279-285(in Chinese with English abstract).
      Wang, J. Y., Yang, C. C., Qiao, Y. L., 2008. Improve the Seismic Resolution with a Stable and Efficient Inverse Q Filter. Progress in Geophysics, 23(2): 456-463(in Chinese with English abstract).
      Xiong, W., Wan, Z. H., Liu, L. F., et al., 2010. A New Method for Semi-Automatic Definition of Cluster Number in Waveform Classification. Oil Geophysical Prospecting, 45(2): 265-271, 320, 161(in Chinese with English abstract).
      Xue, Y. A., Pang, X. J., Hao, Y. W., et al., 2020. Genesis of High-Quality Mixed Rock Reservoir and Its Exploration Significance in Es1 around Southeast Margin of Qinnan Sag, Bohai Sea. Earth Science, 45(10): 3527-3542(in Chinese with English abstract).
      Yan, Z. H., Fang, G., Xu, H. N., et al., 2018. The Application of Hilbert Spectral Whitening Method to High Resolution Processing of Marine Seismic Data. Marine Geology & Quaternary Geology, 38(4): 212-220(in Chinese with English abstract).
      Yang, T., Cao, Y. C., Wang, Y. Z., et al., 2015. Genesis of High-Quality Reservoirs of Fan Delta Front in Lower Part of the Fourth Member of Shahejie Formation in Bonan Subsag. Earth Science, 40(12): 2067-2080(in Chinese with English abstract).
      Yang, X. P., Zhao, W. Z., Zou, C. N., et al., 2007. Origin of Low-Permeability Reservoir and Distribution of Favorable Reservoir. Acta Petrolei Sinica, 28(4): 57-61(in Chinese with English abstract).
      Yin, J. F., Li, J., Xie, F., et al., 2007. Application of Waveform Classification Technique in Predicting Reef Gas Pool in East Sichuan Basin. Geophysical Prospecting for Petroleum, 46(1): 53-57, 73, 15(in Chinese with English abstract).
      You, L., Zhang, Y. Z., Li, C., et al., 2014. Based on Analysis of Sedimentary-Diagenetic Reservoir Facies to Determine "Sweet Spots" Distribution in Low Permeability from Wenchang 9 Area. Journal of Jilin University (Earth Science Edition), 44(5): 1432-1440(in Chinese with English abstract).
      Zhang, D., 2020. Lateral Prediction Method of Fluvial Facies Reservoir Architecture Discontinuity Boundary. SPG/SEG: 4(in Chinese with English abstract).
      Zhang, L., Wang, Y. D., 2020. Calculation and Application of Spectral Blue Operator of the Frequency Division Seismic Data. Journal of Beijing Information Science & Technology University, 35(1): 63-68(in Chinese with English abstract).
      Zhang, S., Zhu, Y. H., Liu, H., et al., 2013. The Application of Seismic Waveform Classification Technique for Sandstone Prediction in Shallow-Water Basin. Progress in Geophysics, 28(5): 2618-2625(in Chinese with English abstract).
      Zhang, W., Hou, G. W., Xiao, X. G., et al., 2019. Genesis of Low Permeability Reservoirs and Main Controlling Factors of High Quality Reservoirs in Xihu Sag, East China Sea Basin. China Offshore Oil and Gas, 31(3): 40-49(in Chinese with English abstract).
      Zhang, Y. L., Ding, F., Yin, C., et al., 2018. The Identification of Fluvial Sand-Body Superimposed Area Based on Seismic Waveform Structure Attributes. Acta Petrolei Sinica, 39(7): 792-801(in Chinese with English abstract).
      Zhao, S. H., Zhu, G. M., 2007. Using Combined Method of Wavelet Transform and Spectrum Equalization to Improve Seismic Data Resolution. Journal of Xi'an University of Science and Technology, 27(2): 255-259(in Chinese with English abstract).
      Zhao, Z. X., Dong, C. M., Lin, C. Y., et al., 2018. Formation Mechanism Of"Sweet Spot"in Low Permeability and Tight Gas Reservoirs: a Case Study of Huagang Formation in X Gas Field, Xihu Sag. Journal of China University of Mining & Technology, 47(5): 995-1007(in Chinese with English abstract).
      Zhu, R. K., Bai, B., Yuan, X. J., et al., 2013. A New Approach for Outcrop Characterization and Geostatistical Analysis of Meandering Channels Sandbodies within a Delta Plain Setting Using Digital Outcrop Models: Upper Triassic Yanchang Tight Sandstone Formation, Yanhe Outcrop, Ordos Basin. Acta Sedimentologica Sinica, 31(5): 867-877(in Chinese with English abstract).
      Zhu, X. M., Pan, R., Zhu, S. F., et al., 2018. Research Progress and Core Issues in Tight Reservoir Exploration. Earth Science Frontiers, 25(2): 141-146(in Chinese with English abstract).
      Zou, C. N., Zhu, R. K., Wu, S. T., et al., 2012. Types, Characteristics, Genesis and Prospects of Conventional and Unconventional Hydrocarbon Accumulations: Taking Tight Oil and Tight Gas in China as an Instance. Acta Petrolei Sinica, 33(2): 173-187(in Chinese with English abstract). doi: 10.1038/aps.2011.203
      Zou, T., 2017. Study on Superimposition Patterns and Main Remaining Oil Control Factors of Channel Sand-Bodies. Journal of Xi'an Shiyou University (Natural Science Edition), 32(5): 36-41(in Chinese with English abstract).
      操应长, 杨田, 宋明水, 等, 2018. 陆相断陷湖盆低渗透碎屑岩储层特征及相对优质储层成因: 以济阳坳陷东营凹陷古近系为例. 石油学报, 39(7): 727-743. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201807001.htm
      陈林, 李珊珊, 游君君, 等, 2019. 文昌B凹陷古近系低渗储层物性影响因素定量评价与应用. 地质科技情报, 38(3): 165-173. doi: 10.19509/j.cnki.dzkq.2019.0317
      崔明明, 李进步, 王宗秀, 等, 2019. 辫状河三角洲前缘致密砂岩储层特征及优质储层控制因素: 以苏里格气田西南部石盒子组8段为例. 石油学报, 40(3): 279-294. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201903003.htm
      邓传伟, 李莉华, 金银姬, 等, 2008. 波形分类技术在储层沉积微相预测中的应用. 石油物探, 47(3): 262-265, 18. doi: 10.3969/j.issn.1000-1441.2008.03.009
      杜殿发, 郭乔乔, 郑洋, 等, 2018. 砂体叠置关系与剩余油分布规律. 特种油气藏, 25(4): 62-66. doi: 10.3969/j.issn.1006-6535.2018.04.012
      封从军, 鲍志东, 代春明, 等, 2015. 三角洲前缘水下分流河道单砂体叠置机理及对剩余油的控制: 以扶余油田J19区块泉头组四段为例. 石油与天然气地质, 36(1): 128-135. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201501017.htm
      纪甜甜, 张武, 任红, 等, 2015. 谱蓝化拓频处理技术在春光区块的应用. 非常规油气, 2(3): 22-26. https://www.cnki.com.cn/Article/CJFDTOTAL-FCYQ201503005.htm
      井涌泉, 范洪军, 陈飞, 等, 2014. 基于波形分类技术预测河流相砂体叠置模式. 地球物理学进展, 29(3): 1163-1167.
      李辉, 罗波, 何雄涛, 等, 2017. 基于地震波形聚类储集砂体边界识别与预测. 工程地球物理学报, 14(5): 573-577. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDQ201705011.htm
      李久娣, 孙莉, 魏水建, 等, 2019. 东海海域深层HG组低渗储层"甜点"预测方法及应用. 石油物探, 58(5): 758-765. https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT201905016.htm
      李贤兵, 赵俊杰, 晋剑利, 等, 2020. 叠前谱蓝化提频技术在乍得Baob油田储层预测中的应用. 石油地球物理勘探, 55(6): 1343-1348, 1166. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ202006019.htm
      刘建伟, 高秋菊, 师涛, 2016. 谱蓝化技术在大王庄油田储层预测中的应用. 复杂油气藏, 9(1): 31-34. https://www.cnki.com.cn/Article/CJFDTOTAL-FZYQ201601007.htm
      刘金库, 孙永亮, 焦旭, 等, 2016. 碎屑岩储层低渗成因及优质储层发育机理: 以歧口凹陷歧北斜坡沙二段储层为例. 天然气地球科学, 27(5): 799-808. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201605006.htm
      卢欢, 王清斌, 牛成民, 等, 2020. 湖相混积岩系同沉积淋滤作用识别标志与优质储层形成机理: 以石臼坨凸起陡坡带Q29和Q36构造沙一、二段为例. 地球科学, 45(10): 3721-3730. doi: 10.3799/dqkx.2020.175
      逯宇佳, 曹俊兴, 刘哲哿, 等, 2019. 波形分类技术在缝洞型储层流体识别中的应用. 石油学报, 40(2): 182-189. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201902006.htm
      秦德文, 侯志强, 姜勇, 等, 2015. 泊松阻尼因子在预测高孔隙度砂岩中的应用. 工程地球物理学报, 12(2): 190-193. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDQ201502010.htm
      唐华风, 王璞珺, 姜传金, 等, 2007. 波形分类方法在松辽盆地火山岩相识别中的应用. 石油地球物理勘探, 42(4): 440-444, 488, 359. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ200704015.htm
      陶倩倩, 孙文钊, 李珊珊, 等, 2017. 扇三角洲相储层"甜点"预测技术在涠洲A油田的应用. 地质科技情报, 36(6): 279-285. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201706034.htm
      王珺, 杨长春, 乔玉雷, 2008. 用稳定高效的反Q滤波技术提高地震资料分辨率. 地球物理学进展, 23(2): 456-463. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200802021.htm
      熊伟, 万忠宏, 刘兰锋, 等, 2010. 波形分类中半自动确定分类数的方法. 石油地球物理勘探, 45(2): 265-271, 320, 161. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201002020.htm
      薛永安, 庞小军, 郝轶伟, 等, 2020. 渤海海域秦南凹陷东南缘沙一段混积岩优质储层成因及勘探意义. 地球科学, 45(10): 3527-3542. doi: 10.3799/dqkx.2020.154
      颜中辉, 方刚, 徐华宁, 等, 2018. 希尔伯特谱白化方法在海洋地震资料高分辨率处理中的应用. 海洋地质与第四纪地质, 38(4): 212-220. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201804019.htm
      杨田, 操应长, 王艳忠, 等, 2015. 渤南洼陷沙四下亚段扇三角洲前缘优质储层成因. 地球科学, 40(12): 2067-2080. doi: 10.3799/dqkx.2015.183
      杨晓萍, 赵文智, 邹才能, 等, 2007. 低渗透储层成因机理及优质储层形成与分布. 石油学报, 28(4): 57-61. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200704010.htm
      殷积峰, 李军, 谢芬, 等, 2007. 波形分类技术在川东生物礁气藏预测中的应用. 石油物探, 46(1): 53-57, 73, 15. https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT200701012.htm
      尤丽, 张迎朝, 李才, 等, 2014. 基于沉积成岩-储集相分析确定文昌9区低渗储层"甜点"分布. 吉林大学学报(地球科学版), 44(5): 1432-1440. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201405004.htm
      张栋, 2020. 河流相储层构型不连续界限横向预测方法. SPG/SEG南京2020年国际地球物理会议论文集(中文), 南京, 574-577.
      张璐, 汪毓铎, 2020. 地震数据分频谱蓝化算子计算方法及应用. 北京信息科技大学学报(自然科学版), 35(1): 63-68. https://www.cnki.com.cn/Article/CJFDTOTAL-BJGY202001012.htm
      张帅, 祝有海, 刘豪, 等, 2013. 地震波形分类技术在浅水湖盆砂体预测中的应用. 地球物理学进展, 28(5): 2618-2625. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201305043.htm
      张武, 侯国伟, 肖晓光, 等, 2019. 西湖凹陷低渗储层成因及优质储层主控因素. 中国海上油气, 31(3): 40-49. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201903005.htm
      张运龙, 丁峰, 尹成, 等, 2018. 基于地震波形结构属性识别河流相砂体叠置区. 石油学报, 39(7): 792-801.
      赵淑红, 朱光明, 2007. 用小波变换谱均衡法提高地震资料的分辨率. 西安科技大学学报, 27(2): 255-259. https://www.cnki.com.cn/Article/CJFDTOTAL-XKXB200702021.htm
      赵仲祥, 董春梅, 林承焰, 等, 2018. 低渗-致密砂岩储层"甜点"成因机制研究: 以西湖凹陷X气田花港组为例. 中国矿业大学学报, 47(5): 995-1007. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201805009.htm
      朱如凯, 白斌, 袁选俊, 等, 2013. 利用数字露头模型技术对曲流河三角洲沉积储层特征的研究. 沉积学报, 31(5): 867-877. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201305012.htm
      朱筱敏, 潘荣, 朱世发, 等, 2018. 致密储层研究进展和热点问题分析. 地学前缘, 25(2): 141-146. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201802019.htm
      邹才能, 朱如凯, 吴松涛, 等, 2012. 常规与非常规油气聚集类型、特征、机理及展望: 以中国致密油和致密气为例. 石油学报, 33(2): 173-187. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201202002.htm
      邹拓, 2017. 复合河道砂体叠置样式与剩余油主控因素研究. 西安石油大学学报(自然科学版), 32(5): 36-41. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY201705006.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(1)

      Article views (506) PDF downloads(65) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return