• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 1
    Jan.  2023
    Turn off MathJax
    Article Contents
    Wei Hao, Li Jiaguang, Tan Hucheng, 2023. Channel Morphological Evolution in Confluence Area of Hotan River in Tarim Basin. Earth Science, 48(1): 359-374. doi: 10.3799/dqkx.2022.413
    Citation: Wei Hao, Li Jiaguang, Tan Hucheng, 2023. Channel Morphological Evolution in Confluence Area of Hotan River in Tarim Basin. Earth Science, 48(1): 359-374. doi: 10.3799/dqkx.2022.413

    Channel Morphological Evolution in Confluence Area of Hotan River in Tarim Basin

    doi: 10.3799/dqkx.2022.413
    • Received Date: 2022-06-30
      Available Online: 2023-02-01
    • Publish Date: 2023-01-25
    • River confluence has a great potential of hydrocarbon reservoirs owing to wide and thick channel-fill deposits by widening and deepening effects. The Mesozoic and Cenozoic hydrocarbon-bearing basins in China are internally drainage basins dominated and fluvial deposits are widely regarded as important hydrocarbon. The (semi-) arid regions cover 41% of the global continental areas, and river systems are widely distributed with substantial ecological resources. However, current research on river confluence is mainly focused on humid regions, and research on the channel morphology of river confluence in drylands and their controls has been rarely reported. In this study, we select the confluence (Kalakashen River and Yulongkashen River) of the Hotan River in Tarim Basin as study area. Firstly, the combination of Digital Elevation Model (DEM) and high-resolution Google Earth images were used to identify the bankfull boundaries of all river channels. Subsequently the evolution of river planform in the confluence area was analyzed using hydrological data and time-series remote sensing images. Results show that the confluence of Hotan River is a fixed and "Y" type confluence, and their junctions have different river types: Kalakashen River is meandering while Yulongkashen River is meandering-braided transitional. Cutoffs occurred along these junctions. The confluence is transformed into braided river, and its bankfull width increases by 58% (505 m wider) compared with that of junctions. Furthermore, we select 23 river confluences in typical semi-arid-arid regions (n= 10) and humid regions (n=13) around the world to investigate the changes in bankfull width from junctions to confluences. Results reveal that the increase (> 50%) in bankfull widths of river confluence in drylands with (non-) sparse vegetation greatly exceeded that (17%) of river confluence in humid areas with riparian vegetation. Slopes (2‰) of these selected dryland rivers (lack of riparian vegetation) are on average one category higher than those (0.6‰) in humid regions. Therefore, lack of riparian vegetation and high slope of river profiles are the main controls for significant widening in river confluences of dryland regions. Our results not only complement the models of river confluence, but also provide a basis for the further research of sedimentary processes and their sedimentary model in dryland river confluence.

       

    • loading
    • Alam, S., Matin, M. A., 2013. Application of 2D Morphological Model to Assess the Response of Karnafuli River Due to Capital Dredging. Journal of Water Resources and Ocean Science, 2(3): 40-48. https://doi.org/10.11648/j.wros.20130203.13
      Berry, P. A. M., Garlick, J. D., Smith, R. G., 2007. Near⁃Global Validation of the SRTM DEM Using Satellite Radar Altimetry. Remote Sensing of Environment, 106(1): 17-27. https://doi.org/10.1016/j.rse.2006.07.011
      Best, J. L., 1986. The Morphology of River Channel Confluences. Progress in Physical Geography: Earth and Environment, 10: 157-174. https://doi.org/10.1177/030913338601000201
      Best, J. L., 1987. Flow Dynamics at River Channel Confluences: Implications for Sediment Transport and Bed Morphology. Special Publications, 39: 27-35. https://doi.org/10.2110/pec.87.39.0027
      Best, J. L., 1988. Sediment Transport and Bed Morphology at River Channel Confluences. Sedimentology, 35: 481-498. https://doi.org/10.1111/j.1365⁃3091.1988.tb00999.x
      Best, J. L., Reid, I., 1984. Separation Zone at Open⁃ Channel Junctions. Journal of Hydraulic Engineering, 110(11): 1588-1594. doi: 10.1061/(ASCE)0733-9429(1984)110:11(1588)
      Blum, M. D., Roberts, H. H., 2009. Drowning of the Mississippi Delta Due to Insufficient Sediment Supply and Global Sea⁃Level Rise. Nature Geoscience, 2(7): 488-491. https://doi.org/10.1038/ngeo553
      Deng, K. Y., Ren, C., 2021. Water Extraction Model of Multispectral Optical Remote Sensing Image. Acta Geodaetica et Cartographica Sinica, 50(10): 1370-1379 (in Chinese with English abstract). doi: 10.11947/j.AGCS.2021.20200482
      Dixon, S. J., Sambrook, S. G. H., Best, J. L., et al., 2018. The Planform Mobility of River Channel Confluences: Insights from Analysis of Remotely Sensed Imagery. Earth⁃Science Reviews, 176: 1-18. https://doi.org/10.1016/j.earscirev.2017.09.009
      Dong, D. W., Abdirahman, H., Wang, D. W., et al., 2018. Characteristics of Runoff and Response to Climate Change in the Hotan River Source Area in Recent Six Decades. Journal of China Institute of Water Resources and Hydropower Research, 16(6): 536-543 (in Chinese with English abstract).
      Farr, T. G., Rosen, P. A., Caro, E., et al., 2008. The Shuttle Radar Topography Mission: Mission to Map the World. Reviews of Geophysics, 45(2): 1-33. https://doi.org/10.1029/2005RG000183
      Hackney, C. R., Darby, S. E., Parsons, D. R., et al., 2018. The Influence of Flow Discharge Variations on the Morphodynamics of a Diffluence⁃Confluence Unit on a Large River. Earth Surface Processes and Landforms, 43(2): 349-362. https://doi.org/10.1002/esp.4204
      Hawker, L., Neal, J., Bates, P., 2019. Accuracy Assessment of the TanDEM⁃X 90 Digital Elevation Model for Selected Floodplain Sites. Remote Sensing of Environment, 232: 111319. https://doi.org/10.1016/j.rse.2019.111319
      Hu, B., Yang, Z., Wang, H., et al., 2009. Sedimentation in the Three Gorges Dam and the Future Trend of Changjiang (Yangtze River) Sediment Flux to the Sea. Hydrology and Earth System Sciences, 13(11): 2253-2264. doi: 10.5194/hess-13-2253-2009
      Huang, T., Pang, Z., 2010. Changes in Groundwater Induced by Water Diversion in the Lower Tarim River, Xinjiang Uygur, NW China: Evidence from Environmental Isotopes and Water Chemistry. Journal of Hydrology, 387(3-4): 188-201. https://doi.org/10.1016/j.jhydrol.2010.04.007
      Jia, Y. R., Liu, Q. H., Zhu, H. T., et al., 2022. Quantitative Pickup of High Frequency Sequence⁃Time Units under Restriction of Milankovitch Sedimentary Rate in Continental Shallow Lake Basin: A Case Study of Huagang Formation in Huangyan Area, Xihu Sag. Earth Science, 47(11): 4020-4032 (in Chinese with English abstract).
      Jin, H. L., Dong, G. R., 2001. Preliminary Study on the Role of River Wriggling in the Evolution of Aeolian Landforms in Arid Region─Taking Hotan River as an Example. Journal of Desert Research, (4): 367-373 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-694X.2001.04.009
      Jin, J. L., Huang, Q. Z., Zhao, G. L., et al., 2018. Evolution of Fluvial Pattern and Analysis of Dominated Factors in the Paleogene Yabus Formation of Palogue Oilfield in Melut Basin, South Sudan. Journal of Palaeogeography, 20(6): 951-962 (in Chinese with English abstract).
      Lan, B., 1998. The Comprehensive Analysis of the Special Property at the Tributary Junction of Mountain River. Journal of Chongqing Jiaotong Institute, 17(4): 91-96 (in Chinese with English abstract).
      Leopold, L. B., Wolman, M. G., 1970. River Channel Patterns. In: Dury, G. H., Leopold, L. B., Wolman, M. G., eds., Rivers and River Terraces. Palgrave Macmillan, London, 197-237.
      Li, J. G., 2018. Sedimentary Model of Fine⁃Grained Dryland Meandering River Terminus Systems in a Semi⁃Arid or Arid Endorheic Basin. Earth Science, 43(S1): 264-276 (in Chinese with English abstract).
      Li, J. G., Zhao, Y., Bates, P., et al., 2020. Digital Elevation Models for Topographic Characterisation and Flood Flow Modelling along Low⁃Gradient, Terminal Dryland Rivers: A Comparison of Spaceborne Datasets for the Río Colorado, Bolivia. Journal of Hydrology, 591: 125617. https://doi.org/10.1016/j.jhydrol.2020.125617
      Li, S. L., Ma, S. P., Zhou, L. W., et al., 2022. Main Influencing Factors of Braided⁃Meander Transition and Coexistence Characteristics and Implications of Ancient Fluvial Sedimentary Environment Reconstruction. Earth Science, 1-25 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2022.013
      Li, S. L., Yu, X. H., Jiang, T., et al., 2017. Meander⁃ Braided Transition Features and Abandoned Channel Patterns in Fluvial Environment. Acta Sedimentologica Sinica, 35(1): 1-9 (in Chinese with English abstract).
      Li, W., Yue, D. L., Li, J., et al., 2022. Variable Architecture Models of Fluvial Reservoir Controlled by Base-Level Cycle: A Case Study of Jurassic Outcrop in Datong Basin. Earth Science, 47(11): 3977-3988 (in Chinese with English abstract).
      Li, Y., Wu, F., Lu, J. Y., et al., 2018. Experiments on Flow Structure in Symmetrical Y Confluence Area. Yangtze River, 47(24): 98-100, 105 (in Chinese with English abstract).
      Li, Z. W., Wu, Y. Z., Hu, X. Y., et al., 2018. Morphological Features and Spatial⁃Temporal Change of Braided Reach of Tongtian River in the Yangtze River Source Region. Journal of Yangtze River Scientific Research Institute, 35(9): 6-11 (in Chinese with English abstract).
      Li, Z. Z., Liu, Z. Q., Gao, S. F., 2004. A Preliminary Study on Sandstorm Hazards and Comprehensive Prevention and Control of Hotan⁃Alar Highway in Xinjiang. Geomorphology Environment Development—Proceedings of the Danxia Mountain Conference in 2004. Geomorphology and Quaternary Committee of the Chinese Geographical Society, Shaoguan (in Chinese).
      Liu, J. X., Cheng, C. H., 1996. Study on the Convergence Characteristics in Mountain Stream. Journal of Chongqing Jiaotong Institute, (4): 90-94 (in Chinese with English abstract).
      Mao, Z. Y., Zhao, S. W., Luo, S., et al., 2005. Study on the Separation Zone in Open⁃Channel Junction. Advances in Water Science, 16(1): 7-12 (in Chinese with English abstract). doi: 10.3321/j.issn:1001-6791.2005.01.002
      Martel, N. T., Buffin⁃Belanger, B. P., 2015. Flow Structure at an Ice⁃Covered River Confluence. E3S Web Conf. , 40: 05037.
      Meade, R. H., Moody, J. A., 2009. Causes for the Decline of Suspended⁃Sediment Discharge in the Mississippi River System, 1940-2007. Hydrological Processes, 24(1): 35-49. https://doi.org/10.1002/hyp.7477
      Miall, A. D., 1977. A Review of the Braided⁃River Depositional Environment. Earth⁃Science Reviews, 13(1): 1-62. https://doi.org/10.1016/0012⁃8252(77)90055⁃1
      Morais, E. S. de., Santos, M. L. dos., Cremon, É. H., et al., 2016. Floodplain Evolution in a Confluence Zone: Paraná and Ivaí Rivers, Brazil. Geomorphology, 257: 1-9. https://doi.org/10.1016/j.geomorph.2015.12.017
      Mosley, M. P., 1976. An Experimental Study of Channel Confluences. The Journal of Geology, 84(5): 535-562. https://doi.org/10.1086/628230
      Mulvaney, T. J., 1851. On the Use of Self⁃Registering Rain and Flood Gauges in Making Observations of the Relations of Rainfall and Flood Discharges in a Given Catchment. Proceedings of the Institution of Civil Engineers of Ireland, 4: 19-31.
      Richards, K. S., 1980. A Note on Changes in Channel Geometry at Tributary Junctions. Water Resources Research, 16(1): 241-244. https://doi.org/10.1029/WR016i001p00241
      Rizzoli, P., Martone, M., Gonzalez, C., et al., 2017. Generation and Performance Assessment of the Global TanDEM⁃X Digital Elevation Model. ISPRS Journal of Photogrammetry and Remote Sensing, 132: 119-139. https://doi.org/10.1016/j.isprsjprs.2017.08.008
      Rodríguez, E., Morris, C. S., Belz, J. E., 2006. A Global Assessment of the SRTM Performance. Photogrammetric Engineering & Remote Sensing, 72(3): 249-260. https://doi.org/10.14358/PERS.72.3.249
      Rust, B. R., 1978. A Classification of Alluvial Channel Systems. In: Miall, A. D., ed., Fluvial Sedimentology. Canada Society of Petroleum Geologists Memoir, 5: 187-198.
      Savenije, H. H. G., 2003. The Width of a Bankfull Channel: Lacey's Formula Explained. Journal of Hydrology, 276(1-4): 176-183. https://doi.org/10.1016/S0022⁃1694(03)00069⁃6
      Tachikawa, T., Hato, M., Kaku, M., et al., 2011. Characteristics of ASTER GDEM Version 2. In: 2011 IEEE International Geoscience and Remote Sensing Symposium. IEEE, Vancouver, 3657-3660. https://doi.org/10.1109/IGARSS.2011.6050017
      Tang, W., Wang, Y. M., Zhao, Z. G., et al., 2016. A Review of Fluvial Pattern Transformation. Geological Review, 62(1): 138-152 (in Chinese with English abstract).
      Wang, H. Z., Wang, B. J., Liu, X. N., et al., 2015. Experimental Study on Water⁃Level Fluctuation Characteristics at Open Channel Confluence Zone. Advanced Engineering Sciences, 47(S1): 13-17 (in Chinese with English abstract).
      Wang, X. G., 2007. Summary of Study on Hydraulic Characteristics of Channel Confluences. China Rural Water and Hydropower, (10): 82-86 (in Chinese with English abstract). doi: 10.3969/j.issn.1007-2284.2007.10.024
      Wessel, B., Huber, M., Wohlfart, C., et al., 2018. Accuracy Assessment of the Global TanDEM⁃X Digital Elevation Model with GPS Data. ISPRS Journal of Photogrammetry and Remote Sensing, 139: 171-182. https://doi.org/10.1016/j.isprsjprs.2018.02.017
      Yamazaki, D., Ikeshima, D., Tawatari, R., et al., 2017. A High⁃Accuracy Map of Global Terrain Elevations. Geophysical Research Letters, 44(11): 5844-5853. https://doi.org/10.1002/2017GL072874
      Yang, H. Y., Li, Z. W., Yu, G. A., 2018. Necessary Conditions of Stable Meander Channel in the Tarim River. Journal of Sediment Research, 43(2): 47-54 (in Chinese with English abstract).
      Yang, Z., Wang, H., Saito, Y., et al., 2006. Dam Impacts on the Changjiang (Yangtze) River Sediment Discharge to the Sea: The Past 55 Years and after the Three Gorges Dam. Water Resources Research, 42(4): 1-10. https://doi.org/10.1029/2005WR003970
      Yu, G. A., Li, Z. W., Yang, H. Y., et al., 2020. Effects of Riparian Plant Roots on the Unconsolidated Bank Stability of Meandering Channels in the Tarim River, China. Geomorphology, 351: 106958. https://doi.org/10.1016/j.geomorph.2019.106958
      Yu, Q. Y., Zhang, J. H., Bai, Y. G., et al., 2021. Evolution Characteristics of the Headstream of the Hotan River Headstream from 1957 to 2018. Arid Zone Research, 38(2): 494-503 (in Chinese with English abstract).
      Yue, D. L., Li, W., Du, Y. S., et al., 2022. Review on Optimization and Fusion of Seismic Attributes for Fluvial Reservoir Characterization. Earth Science, 47(11): 3929-3943 (in Chinese with English abstract).
      Zhai, C., Xiao, Y., Wang, X., 2019. Current Situation and Measures of Flood Control Engineering in Hetian River Basin. Jilin Water Resources, (4): 59-62 (in Chinese with English abstract).
      Zhou, C. Y., Deng, J. Y., 2012. Study on the Characteristics of Flow and Sediment at the Confluence of Open Channels. Water Conservancy Science and Technology and Economy, 18(8): 42-45(in Chinese with English abstract).
      Zink, M., Bachmann, M., Brautigam, B., et al., 2014. TanDEM⁃X: The New Global DEM Takes Shape. IEEE Geoscience and Remote Sensing Magazine, 2(2): 8-23. https://doi.org/10.1109/MGRS.2014.2318895
      邓开元, 任超, 2021. 多光谱光学遥感影像水体提取模型. 测绘学报, 50(10): 1370-1379. doi: 10.11947/j.AGCS.2021.20200482
      董弟文, 阿布都热合曼·哈力克, 王大伟, 等, 2018. 近60年和田河源流区径流特征及对气候变化的响应. 中国水利水电科学研究院学报, 16(6): 536-543. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSX201806003.htm
      靳鹤龄, 董光荣, 2001. 试论干旱区河流在沙漠地貌发育中的作用: 以塔克拉玛干沙漠和田河流域为例. 中国沙漠, (4): 367-373. doi: 10.3321/j.issn:1000-694X.2001.04.009
      晋剑利, 黄奇志, 赵国良, 等, 2018. 南苏丹Melut盆地Palogue油田古近系Yabus组河型演化规律及主控因素分析. 古地理学报, 20(6): 951-962. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201806004.htm
      贾悦锐, 刘强虎, 朱红涛, 等, 2022. 陆相浅水湖盆米氏沉积速率制约下的高频层序‒时间单元定量拾取: 以西湖凹陷黄岩区花港组为例. 地球科学, 47(11): 4020-4032. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202211007.htm
      兰波, 1998. 山区河流交汇河口的综合特性分析. 重庆交通学院学报, 17(4): 91-96. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT804.018.htm
      李嘉光, 2018. 干旱湖盆曲流河末端细粒沉积体系及沉积模式. 地球科学, 43(S1): 264-276. doi: 10.3799/dqkx.2018.525
      李胜利, 马水平, 周练武, 等, 2022. 辫曲转换与共存的主要影响因素及对古代河流沉积环境恢复的启示. 地球科学, 1-25. https://doi.org/10.3799/dqkx.2022.013
      李胜利, 于兴河, 姜涛, 等, 2017. 河流辫‒曲转换特点与废弃河道模式. 沉积学报, 35(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201701001.htm
      李伟, 岳大力, 李健, 等, 2022. 基准面旋回控制的河流相储层差异构型模式: 以山西大同侏罗系露头为例. 地球科学, 47(11): 3977-3988. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202211004.htm
      李元, 吴方, 卢金友, 等, 2016. "Y"型汇流区水流结构试验研究. 人民长江, 47(24): 98-100, 105. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201624022.htm
      李志威, 吴叶舟, 胡旭跃, 等, 2018. 长江源通天河段辫状河道形态特征与变化规律. 长江科学院院报, 35(9): 6-11. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201809003.htm
      李志忠, 刘自强, 高素芳, 2004. 新疆和田‒阿拉尔公路风沙危害及综合防治的初步研究. 地貌·环境·发展——2004丹霞山会议文集. 韶关: 中国地理学会地貌学与第四纪委员会.
      刘建新, 程昌华, 1996. 山区河流干支流汇流特性研究. 重庆交通学院学报, (4): 90-94. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT604.014.htm
      茅泽育, 赵升伟, 罗昇, 等, 2005. 明渠交汇口水流分离区研究. 水科学进展, 16(1): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ200501002.htm
      唐武, 王英民, 赵志刚, 等, 2016. 河型转化研究进展综述. 地质论评, 62(1): 138-152. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201601019.htm
      王海周, 王冰洁, 刘兴年, 等, 2015. 明渠交汇区水位变化特性试验研究. 工程科学与技术, 47(S1): 13-17. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH2015S1003.htm
      王晓刚, 2007. 汇流口水流水力特性研究综述. 中国农村水利水电, (10): 82-86. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNSD200710025.htm
      杨涵苑, 李志威, 余国安, 2018. 塔里木河干流弯曲河段维持蜿蜒的必要条件. 泥沙研究, 43(2): 47-54. https://www.cnki.com.cn/Article/CJFDTOTAL-NSYJ201802008.htm
      余其鹰, 张江辉, 白云岗, 等, 2021.1957-2018年和田河源流径流演变特征. 干旱区研究, 38(2): 494-503. https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ202102021.htm
      岳大力, 李伟, 杜玉山, 等, 2022. 河流相储层地震属性优选与融合方法综述. 地球科学, 47(11): 3929-3943. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202211001.htm
      翟超, 肖杨, 王新, 2019. 和田河流域防洪工程现状及措施探讨. 吉林水利, (4): 59-62. https://www.cnki.com.cn/Article/CJFDTOTAL-JLSL201904018.htm
      周翠英, 邓金运, 2012. 干支流交汇河段水流泥沙特性研究综述. 水利科技与经济, 18(8): 42-45. https://www.cnki.com.cn/Article/CJFDTOTAL-SLKY201208021.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(16)  / Tables(7)

      Article views (1191) PDF downloads(92) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return