• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 5
    May  2024
    Turn off MathJax
    Article Contents
    Ma Zhongyuan, Chai Jiaxing, Zhang Aikui, Yan Zhengjun, Zhang Jinyang, 2024. Geochronology, Geochemistry and Petrogenesis of the Harizha-Nagengkangqieer Granites in the East Kunlun Orogen. Earth Science, 49(5): 1778-1792. doi: 10.3799/dqkx.2022.418
    Citation: Ma Zhongyuan, Chai Jiaxing, Zhang Aikui, Yan Zhengjun, Zhang Jinyang, 2024. Geochronology, Geochemistry and Petrogenesis of the Harizha-Nagengkangqieer Granites in the East Kunlun Orogen. Earth Science, 49(5): 1778-1792. doi: 10.3799/dqkx.2022.418

    Geochronology, Geochemistry and Petrogenesis of the Harizha-Nagengkangqieer Granites in the East Kunlun Orogen

    doi: 10.3799/dqkx.2022.418
    • Received Date: 2022-11-03
      Available Online: 2024-06-04
    • Publish Date: 2024-05-25
    • Several large silver deposits occur in the East Kunlun Orogen but their tectonic setting and related Paleo-Tethyan evolution are highly debated. Geochronological and geochemical works on the granites and porphyritic granites in the Harizha-Nagengkangqieer silver deposits of the East Kunlun Orogen were made in this study. LA-ICP-MS zircon U-Pb dating shows that the Harizha granites were emplaced at 255 Ma and the porphyritic granites in both areas between 220 Ma and 224 Ma. Late Permian Harizha granites have high SiO2 and K2O+Na2O but low CaO and MgO contents with enriched light rare earth elements, depleted heavy rare earth elements and high field strength elements, negative Eu anomalies, high Ga/Al ratios and Zr+Nb+Ce+Y values, and thus are A-type. These rocks were generated by partial melting of crustal calc-alkaline Ⅰ-type granitoids in a back-arc extensional setting because of their relatively high K2O/Na2O, Ga/Al, FeO/MgO ratios. The Late Triassic calc-alkaline, peraluminous porphyritic granites are related to silver mineralization with similar major elements but low contents of trace elements compared to the Late Permian granites, are thus the result of fractional crystallization in a post-collisional background according to this and numerous previous data.

       

    • loading
    • Anderson, T., 2002. Correction of Common Lead in U-Pb Analyse That Do not Report 204Pb. Chemical Geology, 192(1-2): 59-79. https://doi.org/10.1016/S0009-2541(02)00195-X
      Chen, J. J., Wei, J. H., Fu, L. B., et al., 2017. Multiple Sources of the Early Mesozoic Gouli Batholith, Eastern Kunlun Orogenic Belt, Northern Tibetan Plateau: Linking Continental Crustal Growth with Oceanic Subduction. Lithos, 292/293: 161-178. https://doi.org/10.1016/j.lithos.2017.09.006
      Chen, X. D., Li, Y. G., Li, M. T., et al., 2020. Ore Geology, Fluid Inclusions, and C-H-O-S-Pb Isotopes of Nagengkangqieergou Ag-Polymetallic Deposit, East Kunlun Orogen, NW China. Geological Journal, 55(4): 2572-2590. https://doi.org/10.1002/gj.3526
      Chiaradia, M., Ulianov, A., Kouzmanov, K., et al., 2012. Why Large Porphyry Cu Deposits Like High Sr/Y Magmas? Scientific Reports, 2: 685. https://doi.org/10.1038/srep00685
      Ding, Q. F., Jiang, S. Y., Sun, F. Y., 2014. Zircon U-Pb Geochronology, Geochemical and Sr-Nd-Hf Isotopic Compositions of the Triassic Granite and Diorite Dikes from the Wulonggou Mining Area in the Eastern Kunlun Orogen, NW China: Petrogenesis and Tectonic Implications. Lithos, 205: 266-283. https://doi.org/10.1016/j.lithos.2014.07.015
      Fan, X. Z., Sun, F. Y., Xu, C. H., et al., 2021. Genesis of Harizha Ag-Pb-Zn Deposit in the Eastern Kunlun Orogen, NW China: Evidence of Fluid Inclusions and C-H-O-S-Pbisotopes. Resource Geology, 71(3): 177-201. https://doi.org/10.1111/rge.12256
      Feng, K., Li, R. B., Pei, X. Z., et al., 2022. Zircon U-Pb Chronology, Geochemistry and Geological Significance of Late Triassic Intermediate-Acid Volcanic Rocks in Boluositai Area, East Kunlun Orogenic Belt. Earth Science, 47(4): 1194-1216 (in Chinese with English abstract).
      Gu, Z. C., Long, L. L., Wang, Y. W., et al., 2021. Geochronology and Geochemistry of the Late Permian Rhyolite Porphyry in the Nagengkangqieergou Ag-Polymetallic Deposit, East Kunlun Orogen, NW China. Mineral Exploration, 12(4): 919-933 (in Chinese with English abstract). doi: 10.3969/j.issn.1674-7801.2021.04.014
      Guo, X. Z., Jia, Q. Z., Kong, H. L., et al., 2016. Zircon U-Pb Geochronology and Geochemistry of Harizha Quartz Diorite in the Eastern Section from East Kunlun. Geological Science and Technology Information, 35(5): 18-26 (in Chinese with English abstract).
      Hou, Z. Q., Yang, Z. M., Qu, X. M., et al., 2009. The Miocene Gangdese Porphyry Copper Belt Generated during Post-Collisional Extension in the Tibetan Orogen. Ore Geology Reviews, 36(1-3): 25-51. https://doi.org/10.1016/j.oregeorev.2008.09.006
      Hu, Y., Niu, Y. L., Li, J. Y., et al., 2016. Petrogenesis and Tectonic Significance of the Late Triassic Mafic Dikes and Felsic Volcanic Rocks in the East Kunlun Orogenic Belt, Northern Tibet Plateau. Lithos, 245: 205-222. https://doi.org/10.1016/j.lithos.2015.05.004
      Huang, H., Niu, Y. L., Nowell, G., et al., 2014. Geochemical Constraints on the Petrogenesis of Granitoids in the East Kunlun Orogenic Belt, Northern Tibetan Plateau: Implications for Continental Crust Growth through Syn-Collisional Felsic Magmatism. Chemical Geology, 370: 1-18. https://doi.org/10.1016/j.chemgeo.2014.01.010
      Li, M. T., Li, Z. Q., 2017. Constrains of S-Pb-C-O Isotope Compositions on the Origin of Nagengkangqieer Silver Deposit, the Eastern Kunlun Mountains, China. Acta Mineralogica Sinica, 37(6): 771-781 (in Chinese with English abstract).
      Li, Q., 2019. Study on the Geological Characteristics and Enrichment Regularities of Mineralization of Harizha Ag-Cu Polymetallic Deposit in Eastern Kunlun Orogenic Belt, Qinghai Province (Dissertation). Jilin University, Changchun, 17-27 (in Chinese with English abstract).
      Li, Q., Cui, B., Wang, L., et al., 2019. Zircon U-Pb Chronology, Geochemistry and Lu-Hf Isotope Constraints on Genesis of Monzonitic Granite from Harizha Area in Eastern Section of East Kunlun Region. Global Geology, 22(1): 36-49. https://doi.org/10.3969/j.issn.1673-9736.2019.01.05
      Li, Z. C., Pei, X. Z., Bons, P. D., et al., 2022. Petrogenesis and Tectonic Setting of the Early-Middle Triassic Subduction-Related Granite in the Eastern Segment of East Kunlun: Evidences from Petrology, Geochemistry, and Zircon U-Pb-Hf Isotopes. International Geology Review, 64(5): 698-721. https://doi.org/10.1080/00206814.2021.1875268
      Liu, Z. Q., 2011. Study on the Geological Characteristics and Tectonic of Buqingshan Melanges Belt, The South Margin of East Kunlun Mountains (Dissertation). Chang'an University, Xi'an, 141-149 (in Chinese with English abstract).
      Ma, C. Q., Xiong, F. H., Yin, S., et al., 2015. Intensity and Cyclicity of Orogenic Magmatism: An Example from a Paleo-Tethyan Granitoid Batholith, Eastern Kunlun, Northern Qinghai-Tibetan Plateau. Acta Petrologica Sinica, 31(12): 3555-3568 (in Chinese with English abstract).
      Patiño-Douce, A. E., 1997. Generation of Metaluminous A-Type Granites by Low-Pressure Melting of Calc-Alkaline Granitoids. Geology, 25(8): 743. https://doi.org/10.1130/0091-7613(1997)0250743: gomatg>2.3.co;2 doi: 10.1130/0091-7613(1997)0250743:gomatg>2.3.co;2
      Pearce, J., 1996. Sources and Settings of Granitic Rocks. Episodes, 19(4): 120-125. https://doi.org/10.18814/epiiugs/1996/v19i4/005
      Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956
      Richards, J. P., 2003. Tectono-Magmatic Precursors for Porphyry Cu-(Mo-Au) Deposit Formation. Economic Geology, 98(8): 1515-1533. https://doi.org/10.2113/gsecongeo.98.8.1515
      Song, Z. B., Zhang, Y. L., Chen, X. Y., et al., 2013. Geochemical Characteristics of Harizha Granite Diorite-Porphyry in East Kunlun and Their Geological Implications. Mineral Deposits, 32(1): 157-168 (in Chinese with English abstract).
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society of London Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
      Wang, W., Xiong, F. H., Ma, C. Q., et al., 2021. Petrogenesis of Triassic Suolagou Sanukitoid-Like Diorite in East Kunlun Orogen and Its Implications for Paleo-Tethyan Orogeny. Earth Science, 46(8): 2887-2902 (in Chinese with English abstract).
      Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202
      Xiong, F. H., Ma, C. Q., Zhang, J. Y., et al., 2014. Reworking of Old Continental Lithosphere: An Important Crustal Evolution Mechanism in Orogenic Belts, as Evidenced by Triassic Ⅰ-Type Granitoids in the East Kunlun Orogen, Northern Tibetan Plateau. Journal of the Geological Society, 171(6): 847-863. https://doi.org/10.1144/jgs2013-038
      Xu, C. W., Wei, J. H., Zhou, H. Z., et al., 2020. S-Pb Isotope Characteristics and Prospecting Model of the Nagengkangqieer Silver Deposit in the Eastern Segment of East Kunlun Mountain. Geological Bulletin of China, 39(5): 712-727 (in Chinese with English abstract).
      Yang, J. S., Shi, R. D., Wu, C. L., et al., 2009. Dur'ngoi Ophiolite in East Kunlun, Northeast Tibetan Plateau: Evidence for Paleo-Tethyan Suture in Northwest China. Journal of Earth Science, 20(2): 303-331. https://doi.org/10.1007/s12583-009-0027-y
      Yu, M., Feng, C. Y., Zhao, Y. M., et al., 2015. Genesis of Post-Collisional Calc-Alkaline and Alkaline Granitoids in Qiman Tagh, East Kunlun, China. Lithos, 239: 45-59. https://doi.org/10.1016/j.lithos.2015.08.022
      Zhang, B., Kong, H. L., Li, Z. M., et al., 2016. Zircon U-Pb Dating, Geochemical and Geological Significance of the Tonalites from the Harizha Lead-Zinc Polymetallic Mine in East Kunlun Mountains. Geological Science and Technology Information, 35(5): 9-17 (in Chinese with English abstract).
      Zhang, J. Y., Ma, C. Q., Li, J. W., et al., 2017a. A Possible Genetic Relationship between Orogenic Gold Mineralization and Post-Collisional Magmatism in the Eastern Kunlun Orogen, Western China. Ore Geology Reviews, 81: 342-357. https://doi.org/10.1016/j.oregeorev.2016.11.003
      Zhang, J. Y., Yang, Z. B., Zhang, H., et al., 2017b. Controls on the Formation of Cu-Rich Magmas: Insights from the Late Triassic Post-Collisional Saishitang Complex in the Eastern Kunlun Orogen, Western China. Lithos, 278/279/280/281: 400-418. https://doi.org/10.1016/j.lithos.2017.02.008
      Zhao, X., Fu, L. B., Wei, J. H., et al., 2019. Late Permian Back-Arc Extension of the Eastern Paleo-Tethys Ocean: Evidence from the East Kunlun Orogen, Northern Tibetan Plateau. Lithos, 340/341: 34-48. https://doi.org/10.1016/j.lithos.2019.05.006
      Zhao, X., Wei, J. H., Fu, L. B., et al., 2020. Multi-Stage Crustal Melting from Late Permian Back-Arc Extension through Middle Triassic Continental Collision to Late Triassic Post-Collisional Extension in the East Kunlun Orogen. Lithos, 360/361: 105446. https://doi.org/10.1016/j.lithos.2020.105446
      Zhou, H. Z., Wei, J. H., Shi, W. J., et al., 2020. Late Triassic Post-Collision Extension at Elashan Magmatic Belt, East Kunlun Orogenic Belt: Insights from Suolagou Highly Fractionated Ⅰ-Type Granite. Bulletin of Geological Science and Technology, 39(4): 150-164 (in Chinese with English abstract).
      Zhu, Y. T., 2006. The Formation and Evolution of the Hoh Xil-Bayan Har Triassic Sedimentary Basin (Dissertation). Chengdu University of Technology, Chengdu, 20-25 (in Chinese with English abstract).
      封铿, 李瑞保, 裴先治, 等, 2022. 东昆仑造山带波洛斯太地区晚三叠世中酸性火山岩锆石U-Pb年代学、地球化学及地质意义. 地球科学, 47(4): 1194-1216. doi: 10.3799/dqkx.2021.116?viewType=HTML
      谷子成, 龙灵利, 王玉往, 等, 2021. 东昆仑那更康切尔沟银多金属矿床晚二叠世流纹斑岩年代学和地球化学特征研究. 矿产勘查, 12(4): 919-933. https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS202104018.htm
      国显正, 贾群子, 孔会磊, 等, 2016. 东昆仑东段哈日扎石英闪长岩时代、成因及其地质意义. 地质科技情报, 35(5): 18-26. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201605003.htm
      李敏同, 李忠权, 2017. 东昆仑那更康切尔银矿床S-Pb-C-O同位素地球化学特征. 矿物学报, 37(6): 771-781. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201706012.htm
      李青, 2019. 青海东昆仑哈日扎银铜多金属矿床地质特征及矿化富集规律(硕士学位论文). 长春: 吉林大学, 17-27.
      刘战庆, 2011. 东昆仑南缘布青山构造混杂岩带地质特征及区域构造研究(硕士学位论文). 西安: 长安大学, 141-149.
      马昌前, 熊富浩, 尹烁, 等, 2015. 造山带岩浆作用的强度和旋回性: 以东昆仑古特提斯花岗岩类岩基为例. 岩石学报, 31(12): 3555-3568. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201512004.htm
      宋忠宝, 张雨莲, 陈向阳, 等, 2013. 东昆仑哈日扎含矿花岗闪长斑岩LA-ICP-MS锆石U-Pb定年及地质意义. 矿床地质, 32(1): 157-168. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201301014.htm
      王巍, 熊富浩, 马昌前, 等, 2021. 东昆仑造山带索拉沟地区三叠纪赞岐质闪长岩的成因机制及其对古特提斯造山作用的启示. 地球科学, 46(8): 2887-2902. doi: 10.3799/dqkx.2020.270?viewType=HTML
      徐崇文, 魏俊浩, 周红智, 等, 2020. 东昆仑东段那更康切尔银矿硫-铅同位素特征与找矿模型. 地质通报, 39(5): 712-727. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202005013.htm
      张斌, 孔会磊, 李智明, 等, 2016. 东昆仑哈日扎铅锌多金属矿区英云闪长岩锆石U-Pb定年、地球化学及其地质意义. 地质科技情报, 35(5): 9-17. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201605002.htm
      周红智, 魏俊浩, 石文杰, 等, 2020. 东昆仑鄂拉山岩浆带晚三叠世后碰撞伸展: 来自索拉沟高分异Ⅰ型花岗岩的证据. 地质科技通报, 39(4): 150-164. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202004020.htm
      朱迎堂, 2006. 可可西里-巴颜喀拉三叠纪沉积盆地的形成及演化(博士学位论文). 成都: 成都理工大学, 20-25.
    • dqkxzx-49-5-1778-附表.docx
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(14)

      Article views (571) PDF downloads(75) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return