• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 8
    Aug.  2023
    Turn off MathJax
    Article Contents
    Gu Yansheng, Li Yuenan, Xie Shucheng, Yin Hongfu, 2023. On the Establishment of Wuhan as an International Wetland City from the Perspective of Lake Evolution. Earth Science, 48(8): 3193-3204. doi: 10.3799/dqkx.2022.421
    Citation: Gu Yansheng, Li Yuenan, Xie Shucheng, Yin Hongfu, 2023. On the Establishment of Wuhan as an International Wetland City from the Perspective of Lake Evolution. Earth Science, 48(8): 3193-3204. doi: 10.3799/dqkx.2022.421

    On the Establishment of Wuhan as an International Wetland City from the Perspective of Lake Evolution

    doi: 10.3799/dqkx.2022.421
    • Received Date: 2022-10-03
    • Publish Date: 2023-08-25
    • Wuhan, the city of a hundred lakes, is one of the biggest cities with the richest lake resources in the world's inland cities, and has been certified as an "international wetland city" in 2022. In order to further promote the construction of "international wetland city", it is necessary to find out the formation and evolution history of lakes in Wuhan and its influencing factors. In this paper, the impacts of regional tectonic environment, river channel evolution, climate change and human activities on the formation and evolution, ecology and environment of lakes in Wuhan Area are systematically discussed. The results show that the causes and evolution of lakes in Wuhan Area have profound geological environment and climate background. Under the influence of neotectonic tilting and uplifting in the Quaternary, regional subsidence and depression created conditions for the formation of the lakes, and the warm and humid climate since the last deglaciation promoted the expansion of the lakes. Since the historical period, the evolution of estuary section of the lower Hanshui River has had a profound impact on the formation and evolution of lakes in Hankou and Hanyang districts. In the past hundred years, the increasing human activities have brought about the rapid shrinkage of lakes in Wuhan, pollution and ecological degradation, and the aggravation of drought and flood disasters. Therefore, rethinking profoundly the human-lake relationship, taking into account the long-term natural restoration of lake ecosystems and the irreversibility of serious ecosystem degradation caused by human activities, andestablishing a harmonious coexistence of human-lake relationship are crucial to theWuhan's urban ecological security.Based on the above historical lessons and problems of lake evolution, in the key period of current Yangtze River Protection and Wuhan's establishment of "international wetland city", we have targeted in "world wetland capital" strategic planning for Wuhan lake ecological protection, which need a top-level design on "the overall plans for the protection system of mountains, rivers, forests, farmland, lakes and grasslands", environment management and ecological restoration of pollution and degradation lake water", and "establishment of lake health management of Wuhan Paradigm", and further improvement on the lake ecological protection, management and evaluation system.The above research is not only conducive to building Wuhan into an "international wetland city", but also set a model role in building Wuhan into a "world wetland capital" and the thorough implementation of the strategy of "Yangtze River Protection".

       

    • loading
    • Cai, S.M., Guan, Z.H., 1979. Study on Lake Geology (Quaternary Period) of East Lake in Wuhan: Discussion on the Origin of East Lake and the Question of Ancient Yunmeng Lakes. Oceanologia et Limnologia Sinica, 10(4): 383-394 (in Chinese with English abstract).
      Chen, X., Liang, J., Zeng, L. H., et al., 2022. Heterogeneity in Diatom Diversity Response to Decadal Scale Eutrophication in Floodplain Lakes of the Middle Yangtze Reaches. Journal of Environmental Management, 322(8): 116164. https://doi.org/10.1016/j.jenvman.2022.116164
      Fang, J. Y., Rao, S., Zhao, S. Q., 2005. Human-Induced Long-Term Changes in the Lakes of the Jianghan Plain, Central Yangtze. Frontiers in Ecology and the Environment, 3(4): 186-192. https://doi.org/10.1890/1540-9295(2005)003[0186:hlcitl]2.0.co;2
      Gu, Y. S., Qiu, H. O., Xie, S. C., et al., 2008b. Lake Sediment Records for Eutrophication History in Response to Human Activity during Recent Century in the Liangzi Lake, Hubei Province. Earth Science, 33(5): 678-685 (in Chinese with English abstract).
      Gu, Y. S., Wang, H. L., Huang, X. Y., et al., 2012. Phytolith Records of the Climate Change since the Past 15 000 Years in the Middle Reach of the Yangtze River in China. Frontiers of Earth Science, 6(1): 10-17. https://doi.org/10.1007/s11707-012-0302-6
      Gu, Y.S., Guan, S., Ma, T., et al., 2018. Quaternary Sedimentary Environment Documented by Borehole Stratigraphical Records in Eastern Jianghan Basin. Earth Science, 43(11): 3989-4000 (in Chinese with English abstract).
      Gu, Y.S., Li, X.Y., Qiu, H.O., et al., 2008a. Sediments Records of Eutrophication History in the Donghu Lake, Wuhan, over the Past 100 Years. Ecology and Environment, 17(1): 35-40 (in Chinese with English abstract).
      Gu, Y.S., Qiu, H.O., Xie, S.C., et al., 2008b. Lake Sediment Records for Eutrophication History in Response to Human Activity during Recent Century in the Liangzi Lake, Hubei Province. Earth Science, 33(5): 678-685 (in Chinese with English abstract).
      Hou, Y.K., Geng, C., 2022. Analysis and Study on the Historical Evolution of Drought and Flood Changes and Sudden Water Resources in Wuhan. China's Rural Water Resources and Hydropower Station, (2): 110-116(in Chinese with English abstract). .
      Huang, J.L., 2001. Historical Thought on Land exploitationin Recent 500 Years in Jianghan Plain. Journal of Central China Normal University (Natural Science), 35(4): 485-488 (in Chinese with English abstract).
      Huang, X. Y., Pancost, R. D., Xue, J. T., et al., 2018. Response of Carbon Cycle to Drier Conditions in the Mid-Holocene in Central China. Nature Communications, 9(1): 1369. https://doi.org/10.1038/s41467-018-03804-w
      Institute of Hubei Geology Survey, 2003. An Evaluation Report on the Flooding Areas of Environmental Geological Investigation in the Jingjiang River and Jianghan Plains in the Middle Reaches of the Yangtze River. Institute of Hubei Geological Survey, Wuhan (in Chinese).
      Lee, C. S. L., Qi, S. H., Zhang, G., et al., 2008. Seven Thousand Years of Records on the Mining and Utilization of Metals from Lake Sediments in Central China. Environmental Science & Technology, 42(13): 4732-4738. https://doi.org/10.1021/es702990n
      Li, C.A., 1998. Effect of Tilted Uplift of Tongbai-Dabie Mountains on Middle Yangtze River Environment. Earth Science, 23(6): 562-566 (in Chinese with English abstract).
      Li, C.A., Zhang, Y.F., Li, G.Q., 2022. Genetic Classification of Lakes in Wuhan Based on River and Lake Geological Process. Earth Science, 47(2): 577-588 (in Chinese with English abstract).
      Li, C.A., Zhang, Y.F., Li, G.Q., et al., 2021. Formation of Wuhan East Lake. Earth Science, 46(12): 4562-4572 (in Chinese with English abstract).
      Lin, X., Lu, J.Y., Tian, W. X., et al., 2011. Sedimentary Environment and Palaeoclimate Changes Reflected by Quaternary Sediments of the Bore ZK25 in Dongxihu District of Wuhan City. Geological Science and Technology Information, 30(3): 33-40 (in Chinese with English abstract).
      Liu, H. Y., Gu, Y. S., Huang, X. Y., et al., 2019. A 13, 000-Year Peatland Palaeohydrological Response to the ENSO-Related Asian Monsoon Precipitation Changes in the Middle Yangtze Valley. Quaternary Science Reviews, 212(1): 80-91. https://doi.org/10.1016/j.quascirev.2019.03.034
      Liu, H. Y., Gu, Y. S., Qin, Y. M., et al., 2021. The Elemental Enrichments at Dajiuhu Peatland in the Middle Yangtze Valley in Response to Changes in East Asian Monsoon and Human Activity since 20, 000 cal yr BP. Science of The Total Environment, 757(4-7): 143990. https://doi.org/10.1016/j.scitotenv.2020.143990
      Liu, H. Y., Gu, Y. S., Yu, Z. C., et al., 2020. Holocene Peatland Water Regulation Response to ~1 000-Year Solar Cycle Indicated by Phytoliths in Central China. Journal of Hydrology, 589(5): 125169. https://doi.org/10.1016/j.jhydrol.2020.125169
      Liu, J.H., Qi, S.H., Zhang, G., et al., 2004. Response of the n-Alkanes and Polycyclic Aromatic Hydrocarbons Records in Sediments from Lake Liangzi to the Environmental change. Geochimica, 33(5): 501-506 (in Chinese with English abstract).
      Liu, Z.W., Li, Z.S., Pan, H., et al., 2014. Analysis of the Causes of Drought in Wuhan. Science and Technology Innovation Guide, (30): 91-92(in Chinese with English abstract). .
      Luo, X.J., 2013. On the History of Tectonic Evolution and Karstification in Wuhan. Carsologica Sinica, 32(2): 195-202(in Chinese with English abstract). doi: 10.3969/j.issn.1001-4810.2013.02.011
      Qiao, S.Y., Jiang, J.Y., Xiang, W., et al., 2005. Distribution of Heavy Metals in Sediments in Lake in Wuhan with Assessment on Their Potential Ecological Risk. Resources and Environment of the Yangtze River Basin, 14 (3): 353-357 (in Chinese with English abstract).
      Qin, Y. M., Booth, R. K., Gu, Y. S., et al., 2009. Testate Amoebae as Indicators of 20th Century Environmental Change in Lake Zhangdu, China. Fundamental and Applied Limnology, 175(1): 29-38. https://doi.org/10.1127/1863-9135/2009/0175-0029
      Wang, C., Ma, L., Zhang, Y., et al., 2021. Spatiotemporal Dynamics of Wetlands and their Driving Factors Based on PLS-SEM: A Case Study in Wuhan. Science of The Total Environment, 806: 151310. https://doi.org/10.1016/j.scitotenv.2021.151310
      Wang, C.Q., Wu, Y.H., Liu, J.T., 2004. Quality Status in Urban Lake Water in Wuhan City with Integrated Approaches on Restoration. Resources and Environment of the Yangtze River Basin, (5): 499-502 (in Chinese with English abstract).
      Wang, W. F., Ndungu, A. W., Li, Z., et al., 2017. Microplastics Pollution in Inland Freshwaters of China: A Case Study in Urban Surface Waters of Wuhan, China. Science of The Total Environment, 575(39): 1369-1374. https://doi.org/10.1016/j.scitotenv.2016.09.213
      Wuhan Ecology and Environment Bureau. 2012. Wuhan Environmental Status Bulletin in 2011. http://hbj.wuhan.gov.cn/fbjd_19/xxgkml/zwgk/hjjc/hjzkgb/202004/t20200424_1110621.html. Citation Date 2022-08-05 (in Chinese).
      Wuhan Ecology and Environment Bureau. 2013. Wuhan Environmental Status Bulletin in 2012. http://hbj.wuhan.gov.cn/fbjd_19/xxgkml/zwgk/hjjc/hjzkgb/202004/t20200424_1110631.html. Citation Date 2022-08-05 (in Chinese).
      Wuhan Ecology and Environment Bureau. 2014. Wuhan Environmental Status Bulletin in 2013. http://hbj.wuhan.gov.cn/fbjd_19/xxgkml/zwgk/hjjc/hjzkgb/202004/t20200424_1110634.html. Citation Date 2022-08-05 (in Chinese).
      Wuhan Local Chronicle Compilation Committee, 1998. Concise Readings of Wuhan Municipal Chronicle. Wuhan Publishing House, Wuhan (in Chinese).
      Wuhan Local Chronicle Compilation Committee, 2010. Concise Readings of Wuhan Municipal Chronicle. Wuhan Publishing House, Wuhan (in Chinese).
      Wuhan Statistics Bureau, 1989. Forty Years in Wuhan: 1949-1989. Wuhan University Press, Wuhan (in Chinese).
      Wuhan Statistics Bureau. 1958-2018. Wuhan Statistical Yearbook (1995-2018). China Statistics Press, Beijing (in Chinese).
      Wuhan Statistics Bureau. 2018. Wuhan Statistical Yearbook (2018). China Statistics Press, Beijing (in Chinese).
      Wuhan Urban Planning Administration, 1999. Chronicle of City Planning in Wuhan. Wuhan: Wuhan Publish House (in Chinese).
      Wuhan Water Resources Bureau, 2014. Wuhan Lake Chronicle. Hubei Art Press, Wuhan (in Chinese).
      Wuhan Water Resources Bureau, 2016. Wuhan Water Resources Bulletin in 2015. http://swj.wuhan.gov.cn/szy/202004/t20200427_1129148.html. Citation Date 2022-08-05 (in Chinese).
      Wuhan Water Resources Bureau, 2017. Wuhan Water Resources Bulletin in 2016. http://swj.wuhan.gov.cn/szy/202004/t20200427_1129145.html. Citation Date 2022-08-05 (in Chinese).
      Wuhan Water Resources Bureau, 2018. Wuhan Water Resources Bulletin in 2017. http://swj.wuhan.gov.cn/szy/202004/t20200427_1129144.html. Citation Date 2022-08-05 (in Chinese).
      Xie, G.L., Rao, Y.Y., Jiang, L.Z., et al., 1993. Evaluation of Neotectonic Movement and Stability of Wuhan Area. Crustal Deformation and Earthquake, 13 (3): 59-65 (in Chinese with English abstract).
      Xie, S. C., Evershed, R. P., Huang, X. Y., et al., 2013. Concordant Monsoon-Driven Postglacial Hydrological Changes in Peat and Stalagmite Records and their Impacts on Prehistoric Cultures in Central China. Geology, 41(8): 827-830. https://doi.org/10.1130/g34318.1
      Xu, H., Goldsmith, Y., Lan, J.H., et al., 2020. Juxtaposition of Western Pacific Subtropical High on Asian Summer Monsoon Shapes Subtropical East Asian Precipitation. Geophysical Research Letters, 47(3): e2019GL084705. https://doi.org/10.1029/2019gl084705
      Xu, R.H., Qi, G.F., Yang, L.M., 1988. Research on Quaternary Geology and Neotectonic Movement in Wuhan Area. Journal of Hubei University (Natural Science), 10(2): 93-101 (in Chinese with English abstract).
      Yang, H.R., Xie, Z.R., 1984. Sea-Level Changes along the East Coast of China over the Last 20, 000 Years. Oceanogia et Limnologia Sinica, 15(1): 1-13 (in Chinese with English abstract).
      Yang, Q.X., Feng, W., Du, X.F., et al., 2018. Grain-Size Magnetic Susceptibility and Sporopollen Assemblage Characteristics and Sedimentary Environment Change of ZK04-1 Core in Wuhan Zhangdu Lake. Resources Environment & Engineering, 32(3): 335-339 (in Chinese with English abstract).
      Yang, X., Xie, X.X., 2020. Kuznets Curve Empirical Analysis of Wuhan Construction Land Expansion and Carbon Emission Effect. Journal of Huazhong Agricultural University, (4): 158-165, 182 (in Chinese with English abstract).
      Zhang, H., Griffiths, M.L., Chiang, J.C.H., et al., 2018. East Asian Hydroclimate Modulated by the Position of the Westerlies during Termination i. Science, 362(6414): 580-583. https://doi.org/10.1126/science.aat9393
      Zhang, Q.H., Dong, X.H., Yang, X.D., 2019. Hydrologic and Anthropogenic Influences on Aquatic Macrophyte Development in a Large, Shallow Lake in China. Freshwater Biology, 64(4): 799-812. https://doi.org/10.1111/fwb.13263
      Zhang, X.G., 1984. Historical Evolution of Hanjiang Estuary Section and Its Influence on Hankou Section of the Yangtze River. Journal of Fudan University (Social Science), (3): 29-39(in Chinese with English abstract). .
      Zhao, Y., Du, Y., 1998. Human Activity and Natural Geographical Environment of Wuhan City The Change of River and Transformation of Business Centre of Wuhan City. Resources and Environment in the Yangtze Basin, 7(3): 278-283 (in Chinese with English abstract).
      Zhu, Y. X., Wang, S. M., Wu, R. J., 1998. Sedimentologic Evidence for Date of Southward Moving of the Yangtze River in the Jianghan Plain since the Holocene. Chinese Science Bulletin, 43(8): 659-662. https://doi.org/10.1007/bf02883570
      蔡述明, 官子和, 1979. 武汉东湖湖泊地质(第四纪)研究——有关东湖成因和古云梦泽问题的讨论. 海洋与湖沼学报, 10(4): 383-394. https://www.cnki.com.cn/Article/CJFDTOTAL-HYFZ197904010.htm
      段雪梅, 胡守云, 杨涛, 2007. 武汉市汤逊湖沉积物重金属垂向变化的磁响应特征及环境意义. 第四纪研究, 2007, 27(6): 1105-1112. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200706027.htm
      顾延生, 葛继稳, 黄俊华, 等, 2009. 2万年来气候变化——人类活动与江汉湖群演化. 北京: 地质出版社.
      顾延生, 管硕, 马腾, 等, 2018. 江汉盆地东部第四纪钻孔地层与沉积环境. 地球科学, 43(11): 3989-4000. doi: 10.3799/dqkx.2018.324
      顾延生, 李雪艳, 邱海鸥, 等, 2008a. 100年来东湖富营养化发生的沉积学记录. 生态环境, 17(1): 35-40. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ200801009.htm
      顾延生, 邱海鸥, 谢树成, 等, 2008b. 湖北梁子湖近代沉积记录对人类活动的响应. 地球科学, 33(5): 679-686. http://www.earth-science.net/article/id/1688
      侯雨坤, 耿川, 2022. 武汉市水资源旱涝变化及其急转情况历史演变分析研究. 中国农村水利水电, (2): 110-116. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNSD202202016.htm
      湖北省地质调查院. 2003. 长江中游荆江及江汉平原水患区环境地质调查评价成果报告. 武汉: 湖北省地质调查院.
      黄进良, 2001. 近500年江汉平原湖区土地开发的历史反思. 华中师范大学学报: 自然科学版, 35(4): 485-488. https://www.cnki.com.cn/Article/CJFDTOTAL-HZSZ200104030.htm
      李长安, 1998. 桐柏-大别山掀斜隆升对长江中游环境的影响. 地球科学, 23(6): 562-566. http://www.earth-science.net/article/id/707
      李长安, 张玉芬, 李国庆, 2022. 基于河湖地质过程的武汉市湖泊的成因划分. 地球科学, 47(2): 577-588. doi: 10.3799/dqkx.2021.028
      李长安, 张玉芬, 李国庆, 等, 2021. 武汉东湖是如何形成的?地球科学, 46(12): 4562-4572. doi: 10.3799/dqkx.2021.086
      林晓, 卢佳仪, 田望学, 等, 2011. 武汉东西湖区第四系钻孔的沉积环境及古气候变化. 地质科技情报, 2011, 30(3): 33-40. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201103006.htm
      刘建华, 祁士华, 张干, 等, 2004. 湖北梁子湖沉积物正构烷烃与多环芳烃对环境变迁的记录. 地球化学, 33(5): 501-506. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200405010.htm
      刘志文, 李正珊, 潘卉, 等, 2014. 武汉市旱情成因分析与对策探讨. 科技创新导报, (30): 91-92. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXDB201430072.htm
      罗小杰, 2013. 试论武汉地区构造演化与岩溶发育史. 中国岩溶, 32(2): 195-202. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201302011.htm
      乔胜英, 蒋敬业, 向武, 等, 2005. 武汉地区湖泊沉积物重金属的分布及潜在生态效应评价. 长江流域资源与环境, 14(3): 353-357. https://www.cnki.com.cn/Article/CJFDTOTAL-CJLY200503017.htm
      汪常青, 吴永红, 刘剑彤, 2004. 武汉城市湖泊水环境现状及综合整治途径. 长江流域资源与环境, (5): 499-502. https://www.cnki.com.cn/Article/CJFDTOTAL-CJLY200405018.htm
      武汉地方志编纂委员会, 1998. 武汉市志-总类志. 武汉: 武汉大学出版社.
      武汉地方志编纂委员会, 2010. 武汉市志简明读本. 武汉: 武汉出版社.
      武汉市城市规划管理局, 1999. 武汉市城市规划志. 武汉: 武汉出版社.
      武汉市生态环境局, 2014. 2013年武汉市环境状况公报. http://hbj.wuhan.gov.cn/fbjd_19/xxgkml/zwgk/hjjc/hjzkgb/202004/t20200424_1110634.html. 引用日期2022-08-05.
      武汉市生态环境局, 2012. 2011年武汉市环境状况公报. http://cn.chinagate.cn/infocus/2012-06/08/content_25601169_3.htm. 引用日期2022-08-05.
      武汉市生态环境局, 2013. 2012年武汉市环境状况公报. http://hbj.wuhan.gov.cn/fbjd_19/xxgkml/zwgk/hjjc/hjzkgb/202004/t20200424_1110631.html. 引用日期2022-08-05.
      武汉市水务局, 2014. 武汉湖泊志. 武汉: 湖北美术出版社.
      武汉市水务局, 2016. 2015年武汉市水资源公报. http://swj.wuhan.gov.cn/szy/202004/t20200427_1129148.html. 引用日期2022-08-05.
      武汉市水务局, 2017. 2016年武汉市水资源公报. http://swj.wuhan.gov.cn/szy/202004/t20200427_1129145.html. 引用日期2022-08-05.
      武汉市水务局, 2018. 2017年武汉市水资源公报. http://swj.wuhan.gov.cn/szy/202004/t20200427_1129144.html. 引用日期2022-08-05.
      武汉市统计局, 1989. 武汉四十年1949-1989. 武汉: 武汉大学出版社.
      武汉市统计局, 2018. 武汉统计年鉴(1995-2018). 北京: 中国统计出版社, 1995-2018.
      谢广林, 饶扬誉, 蒋蔺珍, 等, 1993. 武汉地区新构造运动与区域稳定性评价. 地壳形变与地震, 13(3): 59-65. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB199303009.htm
      徐瑞瑚, 齐国凡, 杨礼茂, 1988. 武汉地区第四纪地质与新构造运动的研究. 湖北大学学报(自然科学版), 10(2): 93-101. https://www.cnki.com.cn/Article/CJFDTOTAL-HDZK198802018.htm
      杨怀仁, 谢志仁, 1984. 中国东部近20000年来的气候波动与海面升降运动. 海洋与湖沼, 15(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-HYFZ198401000.htm
      杨青雄, 冯稳, 杜小锋, 等, 2018. 武汉涨渡湖ZK04-1钻孔沉积物粒度、磁化率、孢粉组合特征及其环境演变. 资源环境与工程, 32(3): 335-339. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK201803002.htm
      杨欣, 谢向向, 2020. 武汉市建设用地扩张与碳排放效应的库兹涅茨曲线分析. 华中农业大学学报, (4): 158-165, 182. https://www.cnki.com.cn/Article/CJFDTOTAL-HZND202004017.htm
      张修桂, 1984. 汉水河口段历史演变及其对长江汉口段的影响. 复旦学报(社会科学版), (3): 29-39. https://www.cnki.com.cn/Article/CJFDTOTAL-FDDX198403008.htm
      赵艳, 杜耘, 1998. 武汉市河道变迁与商业中心的转移. 华中师范大学学报: 自然科学版, 32(2): 241-245. https://www.cnki.com.cn/Article/CJFDTOTAL-HZSZ802.026.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(3)  / Tables(1)

      Article views (1301) PDF downloads(112) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return