• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 3
    Mar.  2024
    Turn off MathJax
    Article Contents
    Li Jiebiao, Liang Xiuyu, Zhou Zhichao, Zhao Jingbo, Pan Yuelong, Guo Yonghai, 2024. Hydrochemical Characteristics and Its Significance to Groundwater Flow System at an Underground Nuclear Facility Site. Earth Science, 49(3): 965-977. doi: 10.3799/dqkx.2022.425
    Citation: Li Jiebiao, Liang Xiuyu, Zhou Zhichao, Zhao Jingbo, Pan Yuelong, Guo Yonghai, 2024. Hydrochemical Characteristics and Its Significance to Groundwater Flow System at an Underground Nuclear Facility Site. Earth Science, 49(3): 965-977. doi: 10.3799/dqkx.2022.425

    Hydrochemical Characteristics and Its Significance to Groundwater Flow System at an Underground Nuclear Facility Site

    doi: 10.3799/dqkx.2022.425
    • Received Date: 2022-07-08
      Available Online: 2024-04-12
    • Publish Date: 2024-03-25
    • Hydrochemical characteristics are one of the most critical evaluation factors for the site selection and long-term performance safety evaluation of nuclear facilities. Mathematical statistics, ion proportion method, isotope analysis method, and hydrogeochemical simulation were used in this paper to investigate hydrochemical characteristics of an underground nuclear facility site along the coast. Its hydrochemical characteristics, possible controls, groundwater recharge source, and apparent age were analyzed. Furthermore, the conceptual model of groundwater flow and hydrochemical evolution in the area was preliminarily constructed. The results suggest that the total dissolved solids (TDS) of the groundwater is low, and the pH value in most samples is weakly acidic. The hydrochemical types of groundwater sampling from boreholes and tunnels are mainly HCO3-Na·Ca and HCO3-Ca·Na. The weathering of silicate rocks specifically controls hydrochemical components. Moreover, the weathering dissolution of albite and anorthite is the primary water-rock interaction of groundwater along unconfined aquifer main runoff paths. The groundwater source is the infiltration recharge of local atmospheric precipitation, and the 14C apparent age in the depth range of nuclear facilities is about 2.08-3.60 ka. It is concluded that the hydrochemistry and groundwater circulation conditions at the site are beneficial to ensure the safety of underground nuclear facilities.

       

    • loading
    • Brkić, Ž., Briški, M., Marković, T., 2016. Use of Hydrochemistry and Isotopes for Improving the Knowledge of Groundwater Flow in a Semiconfined Aquifer System of the Eastern Slavonia (Croatia). CATENA, 142: 153-165. https://doi.org/10.1016/j.catena.2016.03.010
      Chidambaram, S., Anandhan, P., Prasanna, M. V., et al., 2013. Major Ion Chemistry and Identification of Hydrogeochemical Processes Controlling Groundwater in and around Neyveli Lignite Mines, Tamil Nadu, South India. Arabian Journal of Geosciences, 6(9): 3451-3467. https://doi.org/10.1007/s12517-012-0589-3
      Cloutier, V., Lefebvre, R., Therrien, R., et al., 2008. Multivariate Statistical Analysis of Geochemical Data as Indicative of the Hydrogeochemical Evolution of Groundwater in a Sedimentary Rock Aquifer System. Journal of Hydrology, 353(3-4): 294-313. https://doi.org/10.1016/j.jhydrol.2008.02.015
      Farid, I., Zouari, K., Rigane, A., et al., 2015. Origin of the Groundwater Salinity and Geochemical Processes in Detrital and Carbonate Aquifers: Case of Chougafiya Basin (Central Tunisia). Journal of Hydrology, 530: 508-532. https://doi.org/10.1016/j.jhydrol.2015.10.009
      Gaillardet, J., Dupré, B., Louvat, P., et al., 1999. Global Silicate Weathering and CO2 Consumption Rates Deduced from the Chemistry of Large Rivers. Chemical Geology, 159(1-4): 3-30. https://doi.org/10.1016/S0009-2541(99)00031-5
      Gibbs, R. J., 1970. Mechanisms Controlling World Water Chemistry. Science, 170(3962): 1088-1090. https://doi.org/10.1126/science.170.3962.1088
      Gimeno, M. J., Auqué, L. F., Acero, P., et al., 2014. Hydrogeochemical Characterisation and Modelling of Groundwaters in a Potential Geological Repository for Spent Nuclear Fuel in Crystalline Rocks (Laxemar, Sweden). Applied Geochemistry, 45: 50-71. https://doi.org/10.1016/j.apgeochem.2014.03.003
      Glynn, P. D., Plummer, L. N., 2005. Geochemistry and the Understanding of Ground-Water Systems. Hydrogeology Journal, 13(1): 263-287. https://doi.org/10.1007/s10040-004-0429-y
      Guo, X. J., Wang, H. W., Shi, J. S., et al., 2022. Hydrochemical Characteristics and Evolution Pattern of Groundwater System in Baiyangdian Wetland, North China Plain. Acta Geologica Sinica, 96(2): 656-672 (in Chinese with English abstract).
      Guo, Y. H., Liu, S. F., Su, R., et al., 2003. The Hydro-Geochemical Modeling of the Potential Repository Site for High-Level Radioactive Waste in China. Geology and Prospecting, 39(6): 64-67 (in Chinese with English abstract).
      Guo, Y. H., Wang, H. L., Dong, J. N., et al., 2013. Isotopic Study of Deep Groundwater in Jijicao Preselected Site for China's High Level Radioactive Waste Disposal Repository. Acta Geologica Sinica, 87(9): 1477-1485 (in Chinese with English abstract).
      Guo, Y. H., Wang, J., 2007. Key Scientific Issues of Geology, Hydrogeology and Geochemistry in High-Level Radioactive Waste Geological Disposal. Chinese Journal of Rock Mechanics and Engineering, 26(S2): 3926-3931 (in Chinese with English abstract).
      Güler, C., Thyne, G. D., McCray, J. E., et al., 2002. Evaluation of Graphical and Multivariate Statistical Methods for Classification of Water Chemistry Data. Hydrogeology Journal, 10(4): 455-474. https://doi.org/10.1007/s10040-002-0196-6
      Han, L. F., Plummer, L. N., 2016. A Review of Single-Sample-Based Models and Other Approaches for Radiocarbon Dating of Dissolved Inorganic Carbon in Groundwater. Earth-Science Reviews, 152: 119-142. https://doi.org/10.1016/j.earscirev.2015.11.004
      Haselbeck, V., Kordilla, J., Krause, F., et al., 2019. Self-Organizing Maps for the Identification of Groundwater Salinity Sources Based on Hydrochemical Data. Journal of Hydrology, 576: 610-619. https://doi.org/10.1016/j.jhydrol.2019.06.053
      He, J., Zhang, Y. K., Zhao, Y. Q., et al., 2019. Hydrochemical Characteristics and Possible Controls of Groundwater in the Xialatuo Basin Section of the Xianshui River. Environmental Science, 40(3): 1236-1244 (in Chinese with English abstract).
      Iwatsuki, T., Hagiwara, H., Ohmori, K., et al., 2015. Hydrochemical Disturbances Measured in Groundwater during the Construction and Operation of a Large-Scale Underground Facility in Deep Crystalline Rock in Japan. Environmental Earth Sciences, 74(4): 3041-3057. https://doi.org/10.1007/s12665-015-4337-3
      Jalali, M., 2007. Salinization of Groundwater in Arid and Semi-Arid Zones: An Example from Tajarak, Western Iran. Environmental Geology, 52(6): 1133-1149. https://doi.org/10.1007/s00254-006-0551-3
      Jasechko, S., 2019. Global Isotope Hydrogeology―Review. Reviews of Geophysics, 57(3): 835-965. https://doi.org/10.1029/2018rg000627
      Laaksoharju, M., Gascoyne, M., Gurban, I., 2008. Understanding Groundwater Chemistry Using Mixing Models. Applied Geochemistry, 23(7): 1921-1940. https://doi.org/10.1016/j.apgeochem.2008.02.018
      Lasaga, A. C., Soler, J. M., Ganor, J., et al., 1994. Chemical Weathering Rate Laws and Global Geochemical Cycles. Geochimica et Cosmochimica Acta, 58(10): 2361-2386. https://doi.org/10.1016/0016-7037(94)90016-7
      Li, P. Y., Wu, J. H., Qian, H., 2013. Assessment of Groundwater Quality for Irrigation Purposes and Identification of Hydrogeochemical Evolution Mechanisms in Pengyang County, China. Environmental Earth Sciences, 69(7): 2211-2225. https://doi.org/10.1007/s12665-012-2049-5
      Liu, F. T., 2008. Research on Groundwater Circulation and Hydrochemical Transport in the Northern Part of Ordos Cretaceous Basin Based on Isotope Technology (Dissertation). Jilin University, Changchun (in Chinese with English abstract).
      Marandi, A., Shand, P., 2018. Groundwater Chemistry and the Gibbs Diagram. Applied Geochemistry, 97: 209-212. https://doi.org/10.1016/j.apgeochem.2018.07.009
      Mayo, A. L., Loucks, M. D., 1995. Solute and Isotopic Geochemistry and Ground Water Flow in the Central Wasatch Range, Utah. Journal of Hydrology, 172(1-4): 31-59. https://doi.org/10.1016/0022-1694(95)02748-E
      Meybeck, M., 1987. Global Chemical Weathering of Surficial Rocks Estimated from River Dissolved Loads. American Journal of Science, 287(5): 401-428. https://doi.org/10.2475/ajs.287.5.401
      Pan, G. F., Li, X. Q., Zhang, J., et al., 2019. Groundwater-Flow-System Characterization with Hydrogeochemistry: A Case in the Lakes Discharge Area of the Ordos Plateau, China. Hydrogeology Journal, 27(2): 669-683. https://doi.org/10.1007/s10040-018-1888-x
      Pang, Z. H., Kong, Y. L., Li, J., et al., 2017. An Isotopic Geoindicator in the Hydrological Cycle. Procedia Earth and Planetary Science, 17: 534-537. https://doi.org/10.1016/j.proeps.2016.12.135
      Parkhurst, D. L., Appelo, C. A. J., 2013. Description of Input and Examples for PHREEQC Version 3: A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. U. S. Geological Survey, Reston. https://doi.org/10.3133/tm6A43
      Pusch, R., Ramqvist, G., Knutsson, S., et al., 2015. The Role of Crystalline Rock for Disposal of High-Level Radioactive Waste (HLW). Procedia Earth and Planetary Science, 15: 526-535. https://doi.org/10.1016/j.proeps.2015.08.070
      Schoeller, H., 1967. Qualitative Evaluation of Ground-Water Resources (in methods and Techniques of Groundwater Investigation and Development), Water Resource Series, UNESCO, Paris. ]
      Shi, X. Y., Wang, Y., Jiao, J. J., et al., 2018. Assessing Major Factors Affecting Shallow Groundwater Geochemical Evolution in a Highly Urbanized Coastal Area of Shenzhen City, China. Journal of Geochemical Exploration, 184: 17-27. https://doi.org/10.1016/j.gexplo.2017.10.003
      Smellie, J. A. T., Laaksoharju, M., Wikberg, P., 1995. ÄSPÖ, SE Sweden: A Natural Groundwater Flow Model Derived from Hydrogeochemical Observations. Journal of Hydrology, 172(1-4): 147-169. https://doi.org/10.1016/0022-1694(95)02720-A
      Sung, K. Y., Yun, S. T., Park, M. E., et al., 2012. Reaction Path Modeling of Hydrogeochemical Evolution of Groundwater in Granitic Bedrocks, South Korea. Journal of Geochemical Exploration, 118: 90-97. https://doi.org/10.1016/j.gexplo.2012.05.004
      Sun, H. Y., Sun, X. M., Wei, X. F., et al., 2023. Geochemical Characteristics and Origin of Nuanquanzi Geothermal Water in Yudaokou, Chengde, Hebei, North China. Journal of Earth Science, 34(3): 838-856. https://doi.org/10.1007/s12583-022-1635-z
      Tóth, J., 1980. Cross-Formational Gravity-Flow of Groundwater: A Mechanism of the Transport and Accumulation of Petroleum (the Generalized Hydraulic Theory of Petroleum Migration). Problems of Petroleum Migration. American Association of Petroleum Geologists, Tulsa. https://doi.org/10.1306/St10411C8
      Tóth, J., 1999. Groundwater as a Geologic Agent: An Overview of the Causes, Processes, and Manifestations. Hydrogeology Journal, 7(1): 1-14. https://doi.org/10.1007/s100400050176
      Tóth, J., Sheng, G., 1996. Enhancing Safety of Nuclear Waste Disposal by Exploiting Regional Groundwater Flow: The Recharge Area Concept. Hydrogeology Journal, 4(4): 4-25. https://doi.org/10.1007/s100400050252
      Wang, P., Jin, M. G., Lu, D. C., 2020. Hydrogeochemistry Characteristics and Formation Mechanismof Shallow Groundwater in Yongcheng City, Henan Province. Earth Science, 45(6): 2232-2244 (in Chinese with English abstract).
      Yang, Q. C., Li, Z. J., Ma, H. Y., et al., 2016. Identification of the Hydrogeochemical Processes and Assessment of Groundwater Quality Using Classic Integrated Geochemical Methods in the Southeastern Part of Ordos Basin, China. Environmental Pollution, 218: 879-888. https://doi.org/10.1016/j.envpol.2016.08.017
      Zhao, J. B., Pan, Y. L., Li, J. B., et al., 2023. Inverse Modeling of Parameterized Hydraulic Conductivity Field in a Fractured Medium Based on Pilot Point Method. Earth Science, 48(10): 3878-3895 (in Chinese with English abstract).
      Zhang, Y., Yu, Q., Shi, C. W., et al., 2023. Environmental Isotopes and Cl/Br Ratios Evidences for Delineating Arsenic Mobilization in Aquifer System of the Jianghan Plain, Central China. Journal of Earth Science, 34(2): 571-579. https://doi.org/10.1007/s12583-020-1096-1
      郭小娇, 王慧玮, 石建省, 等, 2022. 白洋淀湿地地下水系统水化学变化特征及演化模式. 地质学报, 96(2): 656-672. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202202020.htm
      郭永海, 刘淑芬, 苏锐, 等, 2003. 高放废物处置库预选场地水文地球化学模拟. 地质与勘探, 39(6): 64-67. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200306018.htm
      郭永海, 王海龙, 董建楠, 等, 2013. 高放废物处置库芨芨槽预选场址深部地下水同位素研究. 地质学报, 87(9): 1477-1485. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201309024.htm
      郭永海, 王驹, 2007. 高放废物地质处置中的地质、水文地质、地球化学关键科学问题. 岩石力学与工程学报, 26(S2): 3926-3931. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S2048.htm
      何锦, 张幼宽, 赵雨晴, 等, 2019. 鲜水河断裂带虾拉沱盆地断面地下水化学特征及控制因素. 环境科学, 40(3): 1236-1244. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201903024.htm
      柳富田, 2008. 基于同位素技术的鄂尔多斯白垩系盆地北区地下水循环及水化学演化规律研究(博士学位论文). 长春: 吉林大学.
      王攀, 靳孟贵, 路东臣, 2020. 河南省永城市浅层地下水化学特征及形成机制. 地球科学, 45(6): 2232-2244. doi: 10.3799/dqkx.2019.280
      赵敬波, 潘跃龙, 李杰彪, 等, 2023. 基于Pilot Point方法反演裂隙岩体参数化渗透结构. 地球科学, 48(10): 3878-3895. doi: 10.3799/dqkx.2022.031
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(12)  / Tables(2)

      Article views (522) PDF downloads(49) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return