• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 11
    Nov.  2022
    Turn off MathJax
    Article Contents
    Gu Yi, Sun Jiyao, Xiao Qian, Li Yiheng, Wang Xinyi, Cao Kenan, Liu Yiting, He Qi, Yang Hao, Chen Qian, Yang Jinkun, Song Wenlei, Zong Keqing, Zhang Wen, Wu Xiang, Hu Zhaochu, Xiao Long, She Zhenbing, Wang Zaicong, 2022. Morphology of Lunar Soil Returned by Chang'E-5 Mission and Implications for Space Weathering. Earth Science, 47(11): 4145-4160. doi: 10.3799/dqkx.2022.432
    Citation: Gu Yi, Sun Jiyao, Xiao Qian, Li Yiheng, Wang Xinyi, Cao Kenan, Liu Yiting, He Qi, Yang Hao, Chen Qian, Yang Jinkun, Song Wenlei, Zong Keqing, Zhang Wen, Wu Xiang, Hu Zhaochu, Xiao Long, She Zhenbing, Wang Zaicong, 2022. Morphology of Lunar Soil Returned by Chang'E-5 Mission and Implications for Space Weathering. Earth Science, 47(11): 4145-4160. doi: 10.3799/dqkx.2022.432

    Morphology of Lunar Soil Returned by Chang'E-5 Mission and Implications for Space Weathering

    doi: 10.3799/dqkx.2022.432
    • Received Date: 2022-09-30
      Available Online: 2022-12-07
    • Publish Date: 2022-11-25
    • Morphologic, structural and compositional characteristics of the lunar soil returned by Chang'E-5 provide invaluable insights into the origin of the lunar soil and the evolution history of the Moon' s surface. Using scanning electron microscopy-energy dispersive spectrometer and micro-Raman spectrometer, the scooped lunar soil sample CE5C0400 (YJFM00403) was systematically investigated. The lunar soil consists of a variety of particles, including single minerals such as plagioclase, clinopyroxene and olivine, basaltic clasts, agglutinates and glass beads. The surface features and microstructures of the particles are characterized by diverse, micrometer to nanometer scale morphological features in the form of fragmentation, surface attachment and microcratered and sputtered structures. The morphological features of Chang'E-5 lunar soil have recorded a wealth of information about the complex processes of space weathering dominated by micrometeorite impacts. Repeated impacts led to the fragmentation and fining of lunar soil particles, whereas impact-induced local melting welded the particles, accompanied by the formation of micrometer to submicrometer metal spheres through decomposition of iron-bearing minerals. Repeated cycles of these complex processes thus have resulted in significant changes in the particle sizes and mineral components of the lunar soil.

       

    • loading
    • Adams, J. B., McCord, T. B., 1971. Optical Properties of Mineral Separates, Glass, and Anorthositic Fragments from Apollo Mare Samples. Geochimica et Cosmochimica Acta, 2: 2183-2195.
      Arndt, J., Von Engelhardt, W., 1987. Formation of Apollo 17 Orange and Black Glass Beads. Journal of Geophysical Research: Solid Earth, 92(B4): E372-E376. doi: 10.1029/JB092iB04p0E372
      Bloch, M. R., Fechtig, H., Gentner, W., et al., 1971. Meteorite Impact Craters, Crater Simulations, and the Meteoroid Flux in the Early Solar System. Geochimica et Cosmochimica Acta, 2: 2639-2652.
      Cai, J. M., Li, N., Cui, L., 2022. The Discovery of "Changesite"-Nuclear Technology Helps China Discover New Minerals on the Moon for the First Time. Science, Technology and Industry for National Defense, (9): 23-25 (in Chinese).
      Cao, K. N., Dong, M. T., She, Z. B., et al., 2022. A Novel Method for Simultaneous Analysis of Particle Size and Mineralogy for Chang'E-5 Lunar Soil with Minimum Sample Consumption. Science China Earth Sciences, 65(9): 1704-1714. https://doi.org/10.1007/s11430-022-9966-5
      Carter, J. L., 1973. Chemistry and Surface Morphology of Soil Particles from Luna 20 LRL Sample 22003. Geochimica et Cosmochimica Acta, 37(4): 795-803. doi: 10.1016/0016-7037(73)90175-0
      Chao, E. C. T., Boreman, J. A., Minkin, J. A., et al., 1970. Lunar Glasses of Impact Origin: Physical and Chemical Characteristics and Geologic Implications. Journal of Geophysical Research, 75(35): 7445-7479. https://doi.org/10.1029/JB075i035p07445
      Che, X., Nemchin, A., Liu, D., et al., 2021. Age and Composition of Young Basalts on the Moon, Measured from Samples Returned by Chang'E-5. Science, 374(6569): 887-890. https://doi.org/10.1126/science.abl7957
      Gu, L., Chen, Y., Xu, Y., et al., 2022. Space Weathering of the Chang'E-5 Lunar Sample from a Mid‐High Latitude Region on the Moon. Geophysical Research Letters, 49(7): e2022GL097875.
      Hapke, B., 2001. Space Weathering from Mercury to the Asteroid Belt. Journal of Geophysical Research: Planets, 106(E5): 10039-10073. doi: 10.1029/2000JE001338
      He, Q., Li, Y., Baziotis, I., et al., 2022. Detailed Petrogenesis of the Unsampled Oceanus Procellarum: The Case of the Chang'E-5 Mare Basalts. Icarus, 383: 115082. https://doi.org/10.1016/j.icarus.2022.115082
      Heiken, G., 1975. Petrology of Lunar Soils. Reviews of Geophysics, 13(4): 567-587. doi: 10.1029/RG013i004p00567
      Heiken, G. H., Vaniman, D. T., French, B. M., 1991. Lunar Sourcebook, a User's Guide to the Moon. Cambridge University Press, 72(1-2): 132-133.
      Hörz, F., Brownlee, D. E., Fechtig, H., et al., 1975. Lunar Microcraters: Implications for the Micrometeoroid Complex. Planetary and Space Science, 23(1): 151-172. https://doi.org/https://doi.org/10.1016/0032-0633(75)90076-8
      Hörz, F., Hartung, J. B., Gault, D. E., 1971. Micrometeorite Craters on Lunar Rock Surfaces. Journal of Geophysical Research, 76(23): 5770-5798. doi: 10.1029/JB076i023p05770
      Jolliff, B. L., Hughes, J. M., Freeman, J. J., et al., 2006. Crystal Chemistry of Lunar Merrillite and Comparison to Other Meteoritic and Planetary Suites of Whitlockite and Merrillite. American Mineralogist, 91(10): 1583-1595. doi: 10.2138/am.2006.2185
      Kuebler, K. E., Jolliff, B. L., Wang, A., et al., 2006. Extracting Olivine (Fo-Fa) Compositions from Raman Spectral Peak Positions. Geochimica et Cosmochimica Acta, 70(24): 6201-6222. https://doi.org/https://doi.org/10.1016/j.gca.2006.07.035
      Li, C., Guo, Z., Li, Y., et al., 2022. Impact-Driven Disproportionation Origin of Nanophase Iron Particles in Chang'E-5 Lunar Soil Sample. Nature Astronomy, 6(10): 1156-1162. https://doi.org/10.1038/s41550-022-01763-3
      Li, C. L., Hu, H., Yang, M. F., et al., 2021a. Characteristics of the Lunar Samples Returned by the Chang'E-5 Mission. National Science Review, 9(2): nwab188. https://doi.org/10.1093/nsr/nwab188
      Li, Q. L., Zhou, Q., Liu, Y., et al., 2021b. Two-Billion-Year-Old Volcanism on the Moon from Chang'E-5 Basalts. Nature, 600(7887): 54-58. https://doi.org/10.1038/s41586-021-04100-2
      Li, S., Milliken, R. E., 2017. Water on the Surface of the Moon as Seen by the Moon Mineralogy Mapper: Distribution, Abundance, and Origins. Science Advances, 3(9): e1701471. https://doi.org/10.1126/sciadv.1701471
      Lindsay, J. F., Srnka, L. J., 1975. Galactic Dust Lanes and Lunar Soil. Nature, 257: 776-778. https://doi.org/10.1038/257776a0
      Long, T., Qian, Y., Norman, M.D., et al., 2022. Constraining the Formation and Transport of Lunar Impact Glasses Using the Ages and Chemical Compositions of Chang'E-5 Glass Beads. Science Advances, 8(39): eabq2542. doi: 10.1126/sciadv.abq2542
      Lucey, P., Korotev, R. L., Gillis, J. J., et al., 2006. Understanding the Lunar Surface and Space-Moon Interactions. Reviews in Mineralogy and Geochemistry, 60(1): 83–219. https://doi.org/10.2138/rmg.2006.60.2
      McKay, D. S., Fruland, R., Heiken, G., 1974. Grain Size and the Evolution of Lunar Soils. In: Dorman, J., Duennebier, F., McKay, D. S., et al., eds. Pergamon Press, New York, 887-906.
      Mueller, G., 1971. Morphology and Petrostatistics of Regular Particles in Apollo 11 and Apollo 12 Fines. Lunar and Planetary Science Conference Proceedings, 2: 2041.
      Pieters, C. M., Ammannito, E., Blewett, D. T., et al., 2012. Distinctive Space Weathering on Vesta from Regolith Mixing Processes. Nature, 491(7422): 79-82. https://doi.org/10.1038/nature11534
      Pieters, C. M., Noble, S. K., 2016. Space Weathering on Airless Bodies. Journal of Geophysical Research Planets, 121(10): 1865-1884. https://doi.org/10.1002/2016je005128
      Pieters, C. M., Taylor, L. A., Noble, S. K., et al., 2000. Space Weathering on Airless Bodies: Resolving a Mystery with Lunar Samples. Meteoritics & Planetary Science, 35(5): 1101-1107. https://doi.org/10.1111/j.1945-5100.2000.tb01496.x
      Qian, Y., Xiao, L., Wang, Q., et al., 2021. China's Chang'E-5 Landing Site: Geology, Stratigraphy, and Provenance of Materials. Earth and Planetary Science Letters, 561: 116855. https://doi.org/10.1016/j.epsl.2021.116855
      Rode, O. D., Ivanov, A. V., Nazarov, M. A., et al., 1979. Atlas of Photomicrographs of the Surface Structures of Lunar Regolith Particles. Springer Science & Business Media, Amsterdam.
      Sharma, S. K., Simons, B., Yoder, H. S., 1983. Raman Study of Anorthite, Calcium Tschermak's Pyroxene, and Gehlenite in Crystalline and Glassy States. American Mineralogist, 68(11-12): 1113-1125.
      Taylor, L. A., Pieters, C. M., Keller, L. P., et al., 2001. Lunar Mare Soils: Space Weathering and the Major Effects of Surface‐Correlated Nanophase Fe. Journal of Geophysical Research: Planets, 106(E11): 27985-27999.
      Tian, H. C., Wang, H., Chen, Y., et al., 2021. Non-KREEP Origin for Chang'E-5 Basalts in the Procellarum KREEP Terrane. Nature, 600(7887): 59-63. https://doi.org/10.1038/s41586-021-04119-5
      Wang, A., Jolliff, B. L., Haskin, L. A., et al., 2001. Characterization and Comparison of Structural and Compositional Features of Planetary Quadrilateral Pyroxenes by Raman Spectroscopy. American Mineralogist, 86(7-8): 790-806. https://doi.org/10.2138/am-2001-0703
      Xiao, Z., Yan, P., Wu, B., et al., 2022. Translucent Glass Globules on the Moon. Science Bulletin, 67(4): 355-358. https://doi.org/https://doi.org/10.1016/j.scib.2021.11.004
      Yang, W., Chen, Y., Wang, H., et al., 2022. Geochemistry of Impact Glasses in the Chang'E-5 Regolith: Constraints on Impact Melting and the Petrogenesis of Local Basalt. Geochimica et Cosmochimica Acta, 335: 183-196.
      Zhang, H., Zhang, X., Zhang, G., et al., 2021. Size, Morphology, and Composition of Lunar Samples Returned by Chang'E-5 Mission. Science China Physics, Mechanics & Astronomy, 65(2): 1-8. https://doi.org/10.1007/s11433-021-1818-1
      Zhang, P., Tai, K., Li, Y., et al., 2022. Diverse Space Weathering Effects on Asteroid Surfaces as Inferred via Laser Irradiation of Meteorites. Astronomy & Astrophysics, 659: A78. https://doi.org/10.1051/0004-6361/202142590
      Zhou, C., Tang, H., Li, X., et al., 2022. Chang'E-5 Samples Reveal High Water Content in Lunar Minerals. Nature Communications, 13(1): 5336. https://doi.org/10.1038/s41467-022-33095-1
      蔡金曼, 李楠, 崔力, 2022. "嫦娥石"发现记——核技术助力我国首次发现月球新矿物. 国防科技工业, (9): 23-25. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGBG202209005.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)

      Article views (2202) PDF downloads(208) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return