Citation: | Wang Quanyu, Li Zhenhua, Tu Zhipeng, Chen Guanyu, Hu Jun, Chen Jiaqi, Chen Jianjun, Lv Guobin, 2023. Geotechnical Named Entity Recognition Based on BERT-BiGRU-CRF Model. Earth Science, 48(8): 3137-3150. doi: 10.3799/dqkx.2022.462 |
Bengio, Y., Courville, A., Vincent, P., 2013. Representation Learning: A Review and New Perspectives. IEEE Transactions on Pattern Analysis & Machine Intelligence, 35(8): 1798-1828. https://doi.org/10.1109/TPAMI.2013.50
|
Cho, K., Van, M., Gulcehre, C., et al., 2014. Learning Phrase Representations Using RNN Encoder-Decoder for Statistical Machine Translation. ArXiv Preprint ArXiv: 1406.1078.
|
Chu, D. P., Wan, P., Li, H., et al., 2021. Geological Entity Recognition Based on ELMO-CNN-BiLSTM-CRF Model. Earth Science. 46(8): 3039-3048(in Chinese with English abstract).
|
Chung, J., Gulcehre, C., Cho, K. H., et al., 2014. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. arXiv preprint arXiv: 1412.3555.
|
Devlin, J., Chang, M., Lee, K., et al., 2018. BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding. ArXiv Preprint ArXiv: 1810.04805.
|
Dong, L., Yang, N., Wang, W., et al., 2019. Unified Language Model Pre-Training for Natural Language Understanding and Generation. ArXiv Preprint ArXiv: 1905.03197.
|
Fan, R., Wang, L., Yan, J., et al., 2020. Deep Learning-Based Named Entity Recognition and Knowledge Graph Construction for Geological Hazards. ISPRS International Journal of Geo-Information, 9(1): 15. https://doi.org/10.3390/ijgi9010015
|
Goyal, A., Gupta, V., Kumar, M., 2018. Recent Named Entity Recognition and Classification Techniques: A Systematic Review. Computer Science Review, 29: 21-43. https://doi.org/10.1016/j.cosrev.2018.06.001
|
He, Y.X., Luo, C.W., Hu, B.Y., 2015. Geographic Entity Recognition Method Based on CRF Model And Rules Combination. Computer Application and Software. 2015, 32(1): 179(in Chinese with English abstract).
|
Lafferty, J., Mccallum, A., Pereira, F., 2001. Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data. Proceedings of the Eighteenth International Conference on Machine Learning. Morgan Kaufmann Publishers Inc., San Francisco, 282–289.
|
Lample, G., Ballesteros, M., Subramanian, S., et al., 2016. Neural Architectures for Named Entity Recognition. Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. The Association for Computational Linguistics, San Diego.
|
Li, J., Sun, A.X., Han, J.L., et al., 2022. ASurvey on Deep Learning for Named Entity Recognition. IEEE Transactions on Knowledge and Data Engineering, 34(1): 50-70. https://doi.org/10.1109/TKDE.2020.2981314
|
Liu, D. S., Liu, H. L., Wu, Y., et al, 2022. Genetic Features of Geo-Materials and Their Testing Metohd. Journal of Civil and Environmental Engineering, 44(04): 1-9(in Chinese with English abstract).
|
Liu, H. L., Zhang, R. H., Liu, D. S., et al., 2021. Study on the Characteristics of Physical and Mechanical Parameters of Engineering Geology Based on Data Fusion. Journal of Civil and Environmental Engineering, 1-11(in Chinese with English abstract).
|
Liu, X., Zhang, S., Wei, F., et al., 2011 Recognizing Named Entities in Tweets. Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, USA, 359-367.
|
Liu, Y., Ott, M., Goyal, N., et al., 2019. RoBERTa: A Robustly Optimized BERT Pretraining Approach. ArXiv Preprint ArXiv: 1907.11692.
|
Marrero, M., Urbano, J., Sánchez-Cuadrado, S., et al., 2013. Named Entity Recognition: Fallacies, Challenges and Opportunities. Computer Standards & Interfaces, 35(5): 482-489. https://doi.org/10.1016/j.csi.2012.09.004
|
Ministry of Housing and Urban Rural Development of The People's Republic of China, 2013. GB/T 50330-2013: Construction Side Slope Engineering technology Stand. Beijing: China Architecture & Building Pres(in Chinese).
|
Ministry of Housing and Urban Rural Development of The People's Republic of China, 2015. JTGT 84-2015: Terminology Standard for geotechnical investigation. Beijing: China Architecture & Building Pres(in Chinese).
|
Ministry of Water Resources of the People's Republic of China, 2014. GB/T 50279-2014: Basic Nomenclature Standard of Geotechnical Engineer. China Planning Press, Beijing(in Chinese).
|
Nadeau, D., Sekine, S., 2007. A Survey of Named Entity Recognition and Classification. Lingvisticae Investigationes, 30(1): 3-26. https://doi.org/10.1075/li.30.1.03nad
|
Qiu, Q., Xie, Z., Wu, L., et al., 2019. BiLSTM-CRF for Geological Named Entity Recognition from The Geoscience Literature. Earth Science Informatics, 12(4): 565-579. https://doi.org/10.1007/s12145-019-00390-3
|
Qiu, Q., Xie, Z., Wu, L., et al., 2019. GNER: A Generative Model for Geological Named Entity Recognition Without Labeled Data Using Deep Learning. Earth and Space Science, 6(6): 931-946. https://doi.org/10.1029/2019EA000610
|
Qiu, X., Sun, T., Xu, Y., et al., 2020. Pre-Trained Models for Natural Language Processing: A Survey. Science China Technological Sciences, 63(10): 1872-1897. https://doi.org/10.1007/s11431-020-1647-3
|
Quimbaya, A. P., Múnera, A. S, , Rivera, R. A. G., et al., 2016. Named Entity Recognition over Electronic Health Records through a Combined Dictionary-Based Approach. Procedia Computer Science, 100: 55-61. https://doi.org/10.1016/j.procs.2016.09.123
|
Ritter, A., Clark, S., Etzioni, O., 2011. Named Entity Recognition in Tweets: an Experimental Study. Proceedings of the Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, USA.
|
Rocktäschel, T., Weidlich, M., Leser, U., 2012. ChemSpot: a Hybrid System for Chemical Named Entity Recognition. Bioinformatics, 28(12): 1633-1640. https://doi.org/10.1093/bioinformatics/bts183
|
Sharnagat, R., 2014. Named Entity Recognition: A Literature Survey. Center For Indian Language Technology, 8-20.
|
Wang, C., Ma, X., Chen, J., et al., 2018. Information Extraction and Knowledge Graph Construction from Geoscience Literature. Computers & Geosciences, 112: 112-120. https://doi.org/10.1016/j.cageo.2017.12.007
|
Yang, J., Zhang, Y., Li, L., et al., 2018. YEDDA: A Lightweight Collaborative Text Span Annotation Tool. Proceedings of ACL 2018, System Demonstrations. Association for Computational Linguistics, Australia.
|
Yang, Z., Dai, Z., Yang, Y., et al., 2019. Xlnet: Generalized Autoregressive Pretraining for Language Understanding. Proceedings of the 33rd International Conference on Neural Information Processing Systems. Curran Associates Inc., NewYork.
|
Zhang, G. Y., Fu, J. Y., Ouyang, Z. Z., et al., 2020. The Importance of Space Database Establishment Based on DGSS in Big Data Environment. Earth Science. 45(9): 3451-3460(in Chinese with English abstract).
|
Zhang, S., Elhadad, N., 2013. Unsupervised Biomedical Named Entity Recognition: Experiments with Clinical and Biological Texts. Journal of biomedical informatics, 46(6): 1088-1098. https://doi.org/10.1016/j.jbi.2013.08.004
|
Zhang, S. D., Elhadad, N., 2013. Unsupervised Biomedical Named Entity Recognition: Experiments with Clinical and Biological Texts. Journal of Biomedical Informatics, 46(6): 1088-1098. https://doi.org/10.1016/j.jbi.2013.08.004
|
Zhang, X. Y., Ye, P., Wang, S., et al., 2018. Geological Entity Recognition Method Based on Deep Belief Networks. Acta Petrologica Sinica. 34(2): 343-351(in Chinese with English abstract).
|
Zhang, X.Y., Zhu, S. N., Zhang, C. J., 2012. Annotation of Geographical Named Entities in Chinese Text. Acta Geodaetica et Cartographica Sinica, 41(1): 115-120. (in Chinese with English abstract).
|
Zhang, Z., Han, X., Liu, Z., et al., 2019. ERNIE: Enhanced Language Representation with Informative Entities. Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence.
|
储德平, 万波, 李红, 等, 2021. 基于ELMO-CNN-BiLSTM-CRF模型的地质实体识别. 地球科学, 46(8): 3039-3048. doi: 10.3799/dqkx.2020.309
|
何炎祥, 罗楚威, 胡彬尧, 2015. 基于CRF和规则相结合的地理命名实体识别方法. 计算机应用与软件, 32(1): 179. https://www.cnki.com.cn/Article/CJFDTOTAL-JYRJ201501047.htm
|
张雪英, 叶鹏, 王曙, 等, 2018. 基于深度信念网络的地质实体识别方法. 岩石学报, 34(2): 343-351. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201802011.htm
|
刘汉龙, 章润红, 刘东升, 等, 2021. 基于数据融合的工程地质物理力学参数特征研究. 土木与环境工程学报(中英文), 1-11.
|
刘东升, 刘汉龙, 吴越, 等, 2022. 岩土材料的基因特征及其测试方法研究. 土木与环境工程学报(中英文), 44(04): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN202204001.htm
|
张雪英, 朱少楠, 张春菊, 2012. 中文文本的地理命名实体标注. 测绘学报, 41(1): 115-120. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201201023.htm
|
张广宇, 付俊彧, 欧阳兆灼, 等, 2020. 大数据时代基于dgss系统下空间数据库建立的重要性. 地球科学, 45(9): 3451-3460. doi: 10.3799/dqkx.2020.130
|
中华人民共和国水利部, 2014. GB/T 50279-2014: 岩土工程基本术语标准. 北京: 中国计划出版社.
|
中华人民共和国住房和城乡建设部, 2013, GB/T 50330-2013: 建筑边坡工程技术规范. 北京: 中国建筑工业出版社.
|
中华人民共和国住房和城乡建设部, 2015. JTGT 84-2015: 岩土工程勘察术语标准. 北京: 中国建筑工业出版社.
|