• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 11
    Nov.  2022
    Turn off MathJax
    Article Contents
    Feng Xinbin, Wang Xun, Sun Guangyi, Yuan Wei, 2022. Research Progresses and Challenges of Mercury Biogeochemical Cycling in Global Vegetation Ecosystem. Earth Science, 47(11): 4098-4107. doi: 10.3799/dqkx.2022.882
    Citation: Feng Xinbin, Wang Xun, Sun Guangyi, Yuan Wei, 2022. Research Progresses and Challenges of Mercury Biogeochemical Cycling in Global Vegetation Ecosystem. Earth Science, 47(11): 4098-4107. doi: 10.3799/dqkx.2022.882

    Research Progresses and Challenges of Mercury Biogeochemical Cycling in Global Vegetation Ecosystem

    doi: 10.3799/dqkx.2022.882
    • Received Date: 2022-10-23
      Available Online: 2022-12-07
    • Publish Date: 2022-11-25
    • Mercury (Hg) is a global pollutant which has been listed by the United Nations Environment Programme focusing on control. Vegetation is a foundational link between atmosphere and pedosphere, and plays an important role in global Hg cycles. Currently, vegetation has been regarded as the important global sink of atmospheric Hg. However, the distinct knowledge gaps in Hg cycling among interface of air-vegetation-soil, and Hg distribution, sources, transformation and their biogeochemical mechanisms in vegetation components, lead to the current global Hg models with the poor parameterization schemes of vegetation related Hg processes. These largely restrain the comprehensive quantification of the vegetation sink for atmospheric Hg across the globe. Recently, the quickly developing Hg isotopic chemistry, HR-XANES/micro-XANES, and micro meteorological mercury flux observation technology provides a new insight in understanding the interface Hg biogeochemical processes among vegetation-soil-air surfaces, and assessing Hg sources and transformation and translocation in vegetations, specifically in forest ecosystems.

       

    • loading
    • Agnan, Y., Le Dantec, T., Moore, C. W., et al., 2016. New Constraints on Terrestrial Surface-Atmosphere Fluxes of Gaseous Elemental Mercury Using a Global Database. Environ. Sci. Technol., 50(2): 507-524. https://doi.org/10.1021/acs.est.5b04013
      Arnold, J., Gustin, M. S., Weisberg, P. J., 2018. Evidence for Nonstomatal Uptake of Hg by Aspen and Translocation of Hg from Foliage to Tree Rings in Austrian Pine. Environmental Science & Technology, 52(3): 1174-1182. https://doi.org/10.1021/acs.est.7b04468
      Bergquist, B. A., Blum, J. D., 2007. Mass-Dependent and -Independent Fractionation of Hg Isotopes by Photoreduction in Aquatic Systems. Science, 318(5849): 417-420. https://doi.org/10.1126/science.1148050
      Bishop, K. H., Lee, Y. H., Munthe, J., et al., 1998. Xylem Sap as a Pathway for Total Mercury and Methylmercury Transport from Soils to Tree Canopy in the Boreal Forest. Biogeochemistry, 40: 101-113. doi: 10.1023/A:1005983932240
      Blackwell, B. D., Driscoll, C. T., 2015. Deposition of Mercury in Forests along a Montane Elevation Gradient. Environmental Science & Technology, 49(9): 5363-5370. https://doi.org/10.1021/es505928w
      Blackwell, B. D., Driscoll, C. T., Maxwell, J. A., et al., 2014. Changing Climate Alters Inputs and Pathways of Mercury Deposition to Forested Ecosystems. Biogeochemistry, 119: 215-228. doi: 10.1007/s10533-014-9961-6
      Chen, J. B., Hintelmann, H., Feng, X. B., et al., 2012. Unusual Fractionation of Both Odd and Even Mercury Isotopes in Precipitation from Peterborough, ON, Canada. Geochimica et Cosmochimica Acta, 90: 33-46. doi: 10.1016/j.gca.2012.05.005
      Cui, L., Feng, X., Lin, C. J., et al., 2014. Accumulation and Translocation of 198Hg in Four Crop Species. Environmental Toxicology and Chemistry, 33(2): 334-340. https://doi.org/10.1002/etc.2443
      Clarkson, T. W., 1993. Mercury: Major Issues in Environmental Health. Pharmaceutical Biology, 100: 31-38. https://doi.org/10.1289/ehp.9310031
      Demers, J. D., Blum, J. D., Zak, D. R., 2013. Mercury Isotopes in a Forested Ecosystem: Implications for Air- Surface Exchange Dynamics and the Global Mercury Cycle. Global Biogeochemical Cycles, 27: 222-238. doi: 10.1002/gbc.20021
      Enrico, M., Roux, G. L., Marusczak, N., et al., 2016. Atmospheric Mercury Transfer to Peat Bogs Dominated by Gaseous Elemental Mercury Dry Deposition. Environmental Science & Technology, 50(5): 2405-2412. https://doi.org/10.1021/acs.est.5b06058
      Feng, X. B., Chen, J. B., Fu, X. W., et al., 2013. Progresses on Environmental Geochemistry of Mercury. Bulletin of Mineralogy, Petrology and Geochemistry, 32(5): 503-530 (in Chinese with English abstract).
      Feng, X. B., Fu, X. W., Jonas, S., et al., 2011. Earth Surface Natural Mercury Emission: Research Progress and Perspective. Chinese Journal of Ecology, 30(5): 845-856 (in Chinese with English abstract).
      Frescholtz, T. E., Gustin, M. S., Schorran, D. E., et al., 2003. Assessing the Source of Mercury in Foliar Tissue of Quaking Aspen. Environ. Toxicol. Chem., 22(9): 2114-2119. https://doi.org/10.1002/etc.5620220922
      Fu, X., Feng, X., Zhu, W., et al., 2010. Elevated Atmospheric Deposition and Dynamics of Mercury in a Remote Upland Forest of Southwestern China. Environmental Pollution (Barking, Essex : 1987), 158(6): 2324-2333. https://doi.org/10.1016/j.envpol.2010.01.032
      Fu, X., Heimburger, L. E., Sonke, J. E., 2014. Collection of Atmospheric Gaseous Mercury for Stable Isotope Analysis Using Iodine- and Chlorine-Impregnated Activated Carbon Traps. Journal of Analytical Atomic Spectrometry, 29: 841-852. doi: 10.1039/c3ja50356a
      Fu, X., Zhang, H., Liu, C., et al., 2019. Significant Seasonal Variations in Isotopic Composition of Atmospheric Total Gaseous Mercury at Forest Sites in China Caused by Vegetation and Mercury Sources. Environmental Science & Technology, 53(23): 13748-13756. https://doi.org/10.1021/acs.est.9b05016
      Fu, X., Zhu, W., Zhang, H., et al., 2016a. Depletion of Atmospheric Gaseous Elemental Mercury by Plant Uptake at Mt. Changbai, Northeast China. Atmospheric Chemistry and Physics, 16: 12861-12873. doi: 10.5194/acp-16-12861-2016
      Fu, X. W., Marusczak, N., Heimburger, L. E., et al., 2016b. Atmospheric Mercury Speciation Dynamics at the High-Altitude Pic du Midi Observatory, Southern France. Atmospheric Chemistry and Physics, 16: 5623-5639. doi: 10.5194/acp-16-5623-2016
      Gbor, P. K., Wen, D. Y., Meng, F., et al., 2006. Improved Model for Mercury Emission, Transport and Deposition. Atmospheric Environment, 40: 973-983. doi: 10.1016/j.atmosenv.2005.10.040
      Grandjean, P., Pichery, C., Bellanger, M., et al., 2012. Calculation of Mercury's Effects on Neurodevelopment. Environmental Health Perspectives, 120(12): A452. https://doi.org/10.1289/ehp.1206033
      Hanson, P. J., Lindberg, S. E., Tabberer, T. A., et al., 1995. Foliar Exchange of Mercury Vapor: Evidence for a Compensation Point. Water Air and Soil Pollution, 80(1): 373-382.
      Jiskra, M., Sonke, J. E., Obrist, D., et al., 2018. A Vegetation Control on Seasonal Variations in Global Atmospheric Mercury Concentrations. Nature Geoscience, 11: 244-250. doi: 10.1038/s41561-018-0078-8
      Kang, H. H., Liu, X. H., Guo, J. M., et al., 2019. Characterization of Mercury Concentration from Soils to Needle and Tree Rings of Schrenk Spruce (Picea Schrenkiana) of the Middle Tianshan Mountains, Northwestern China. Ecological Indicators, 104: 24-31. doi: 10.1016/j.ecolind.2019.04.066
      Khalizov, A. F., Viswanathan, B., Larregaray, P., et al., 2003. A Theoretical Study on the Reactions of Hg with Halogens:   Atmospheric Implications. The Journal of Physical Chemistry A, 107(33): 6360-6365. https://doi.org/10.1021/jp0350722
      Kritee, K., Motta, L. C., Blum, J. D., et al., 2018. Photomicrobial Visible Light-Induced Magnetic Mass Independent Fractionation of Mercury in a Marine Microalga. ACS Earth and Space Chemistry, 2(5): 432-440. https://doi.org/10.1021/acsearthspacechem.7b00056
      Laacouri, A., Nater, E. A., Kolka, R. K., 2013. Distribution and Uptake Dynamics of Mercury in Leaves of Common Deciduous Tree Species in Minnesota, USA. Environmental Science & Technology, 47(18): 10462-10470. https://doi.org/10.1021/es401357z
      Leonard, T. L., Taylor, G. E., Gustin, M. S., et al., 1998. Mercury and Plants in Contaminated Soils: 1. Uptake, Partitioning, and Emission to the Atmosphere. Environmental Toxicology and Chemistry, 17: 2063-2071. doi: 10.1002/etc.5620171024
      Lindberg, S., Bullock, R., Ebinghaus, R., et al., 2007. A Synthesis of Progress and Uncertainties in Attributing the Sources of Mercury in Deposition. Ambio, 36(1): 19-32. https://doi.org/10.1579/0044-7447(2007)36[19:asopau]2.0.co;2
      Lindberg, S. E., Jackson, D. R., Huckabee, J. W., et al., 1979. Atmospheric Emission and Plant Uptake of Mercury from Agricultural Soils near the Almaden Mercury Mine. Journal of Environmental Quality, 8: 572-578.
      Lindberg, S. E., Kim, K. H., Munthe, J., 1995. The Precise Measurement of Concentration Gradients of Mercury in Air over Soils: A Review of Past and Recent Measurements. Water, Air, and Soil Pollution, 80(1-4): 383-392. https://doi.org/10.1007/BF01189688
      Liu, Y., Tao, H., Wang, Y., et al., 2021. Gaseous Elemental Mercury [Hg(0)] Oxidation in Poplar Leaves through a Two-Step Single-Electron Transfer Process. Environmental Science & Technology Letters, 8(12): 1098-1103.
      Liu, Y. W., Liu, G. L., Wang, Z. W., et al., 2022. Understanding Foliar Accumulation of Atmospheric Hg in Terrestrial Vegetation: Progress and Challenges. Critical Reviews in Environmental Science and Technology, 54(24): 4331-4352.
      Lucotte, M., Schetagne, R., Therien, N., et al., 1999. Mercury in the Biogeochemical Cycle Natural Environments and Hydroelectric Reservoirs of Northern Quebec (Canada). Springer, Amsterdam, 1-334.
      Luo, Y., Duan, L., Driscoll, C. T., et al., 2016. Foliage/Atmosphere Exchange of Mercury in a Subtropical Coniferous Forest in South China. Journal of Geophysical Research-Biogeosciences, 121: 2006-2016. doi: 10.1002/2016JG003388
      Manceau, A., Lemouchi, C., Enescu, M., et al., 2015. Formation of Mercury Sulfide from Hg(Ⅱ)-Thiolate Complexes in Natural Organic Matter. Environmental Science & Technology, 49(16): 9787-9796. https://doi.org/10.1021/acs.est.5b02522
      Manceau, A., Wang, J., Rovezzi, M., et al., 2018. Biogenesis of Mercury-Sulfur Nanoparticles in Plant Leaves from Atmospheric Gaseous Mercury. Environ. Sci. Technol., 52(7): 3935-3948. https://doi.org/10.1021/acs.est.7b05452
      Manoj, M. C., Srivastava, J., Uddandam, P. R., et al., 2020. A 2 000 Year Multi-Proxy Evidence of Natural/Anthropogenic Influence on Climate from the Southwest Coast of India. Journal of Earth Science, 31(5): 1029-1044. doi: 10.1007/s12583-020-1336-4
      Mao, X., Liu, L. J., Song, L., et al., 2021. Ecological Environment Evolution and Is Influencing Factors in Baiyangdian Lake in Recent 70 Years. Earth Science, 46 (7): 2609-2620 (in Chinese with English abstract).
      Obrist, D., Agnan, Y., Jiskra, M., et al., 2017. Tundra Uptake of Atmospheric Elemental Mercury Drives Arctic Mercury Pollution. Nature, 547(7662): 201-204. https://doi.org/10.1038/nature22997
      Obrist, D., Kirk, J. L., Zhang, L., et al., 2018. A Review of Global Environmental Mercury Processes in Response to Human and Natural Perturbations: Changes of Emissions, Climate, and Land Use. Ambio, 47(2): 116-140. https://doi.org/10.1007/s13280-017-1004-9
      Obrist, D., Roy, E. M., Harrison, J. L., et al., 2021. Previously Unaccounted Atmospheric Mercury Deposition in a Midlatitude Deciduous Forest. PNAS, 118(29): e2105477118. https://doi.org/10.1073/pnas.2105477118
      Outridge, P. M., Mason, R. P., Wang, F., et al., 2018. Updated Global and Oceanic Mercury Budgets for the United Nations Global Mercury Assessment 2018. Environmental Science & Technology, 52(20): 11466-11477.
      Pereira, E., Vale, C., Tavares, C. F., et al., 2005. Mercury in Plants from Fields Surrounding a Contaminated Channel of Ria de Aveiro, Portugal. Soil and Sediment Contamination: An International Journal, 14(6): 571-577. https://doi.org/10.1080/15320380500263774
      Pirrone, N., Cinnirella, S., Feng, X., et al., 2010. Global Mercury Emissions to the Atmosphere from Anthropogenic and Natural Sources. Atmospheric Chemistry and Physics, 10(13): 5951-5964. doi: 10.5194/acp-10-5951-2010
      Selin, N. E., Jacob, D. J., Yantosca, R. M., et al., 2008. Global 3-D Land-Ocean-Atmosphere Model for Mercury: Present-Day versus Preindustrial Cycles and Anthropogenic Enrichment Factors for Deposition. Global Biogeochemical Cycles, 22(2): 1-13.
      Shah, V., Jacob, D. J., Thackray, C. P., et al., 2021. Improved Mechanistic Model of the Atmospheric Redox Chemistry of Mercury. Environmental Science & Technology, 55(21): 14445-14456. https://doi.org/10.1021/acs.est.1c03160
      Shetty, S. K., Lin, C. J., Streets, D. G., et al., 2008. Model Estimate of Mercury Emission from Natural Sources in East Asia. Atmospheric Environment, 42: 8674-8685. doi: 10.1016/j.atmosenv.2008.08.026
      Smith-Downey, N. V., Sunderl, E. M., Jacob, D. J., 2010. Anthropogenic Impacts on Global Storage and Emissions of Mercury from Terrestrial Soils: Insights from a New Global Model. Journal of Geophysical Research-Atmospheres, 115: 227-235.
      Sommar, J., Osterwalder, S., Zhu, W., 2020. Recent Advances in Understanding and Measurement of Hg in the Environment: Surface-Atmosphere Exchange of Gaseous Elemental Mercury (Hg0). Sci. Total Environ., 721: 137648. https://doi.org/10.1016/j.scitotenv.2020.137648
      Sommar, J., Zhu, W., Lin, C. J., et al., 2013a. Field Approaches to Measure Hg Exchange between Natural Surfaces and the Atmosphere—A Review. Critical Reviews in Environmental Science and Technology, 43(15): 1657-1739. https://doi.org/10.1080/10643389.2012.671733
      Sommar, J., Zhu, W., Shang, L. H., et al., 2013b. A Whole-Air Relaxed Eddy Accumulation Measurement System for Sampling Vertical Vapour Exchange of Elemental Mercury. Tellus B: Chemical and Physical Meteorology, 65(1): 19940. https://doi.org/10.3402/tellusb.v65i0.19940
      St Louis, V. L., Graydon, J. A., Lehnherr, I., et al., 2019. Atmospheric Concentrations and Wet/Dry Loadings of Mercury at the Remote Experimental Lakes Area, Northwestern Ontario, Canada. Environmental Science & Technology, 53: 8017-8026.
      St Louis, V. L., Rudd, J. W., Kelly, C. A., et al., 2001. Importance of the Forest Canopy to Fluxes of Methyl Mercury and Total Mercury to Boreal Ecosystems. Environmental Science & Technology, 35(15): 3089-3098. https://doi.org/10.1021/es001924p
      Stamenkovic, J., Gustin, M. S, 2009. Nonstomatal versus Stomatal Uptake of Atmospheric Mercury. Environmental Science & Technology, 43(5): 1367-1372. https://doi.org/10.1021/es801583a
      Stein, E. D., Cohen, Y., Winer, A. M., 1996. Environmental Distribution and Transformation of Mercury Compounds. Critical Reviews in Environmental Science and Technology, 26(1): 1-43. https://doi.org/10.1080/10643389609388485
      Streets, D. G., Devane, M. K., Lu, Z., et al., 2011. All-Time Releases of Mercury to the Atmosphere from Human Activities. Environ. Sci. Technol., 45(24): 10485-10491. https://doi.org/10.1021/es202765m
      Streets, D. G., Horowitz, H. M., Jacob, D. J., et al., 2017. Total Mercury Released to the Environment by Human Activities. Environmental Science & Technology, 51(11): 5969-5977. https://doi.org/10.1021/acs.est.7b00451
      UNEP, 2013. Global Mercury Assessment 2013: Sources, Emissions, Releases and Environmental Transport. UNEP Chemicals Branch, UN-Environment Programme, Switzerland.
      UNEP, 2018. Global Mercury Assessment 2018. Chemicals and Health Branch, UN-Environment Programme, Switzerland.
      Wang, B., Yuan, W., Wang, X., et al., 2022a. Canopy-Level Flux and Vertical Gradients of Hg0 Stable Isotopes in Remote Evergreen Broadleaf Forest Show Year-around Net Hg0 Deposition. Environmental Science & Technology, 56(9): 5950-5959. https://doi.org/10.1021/acs.est.2c00778
      Wang, J., Man, Y., Yin, R., et al., 2022b. Isotopic and Spectroscopic Investigation of Mercury Accumulation in Houttuynia Cordata Colonizing Historically Contaminated Soil. Environmental Science & Technology, 56(12): 7997-8007. https://doi.org/10.1021/acs.est.2c00909
      Wang, X., Yuan, W., Lin, C. J., et al., 2022c. Mercury Cycling and Isotopic Fractionation in Global Forests. Critical Reviews in Environmental Science and Technology, 52(21): 3763-3786. https://doi.org/10.1080/10643389.2021.1961505
      Wang, J., Shaheen, S. M., Anderson, C. W. N., et al., 2020a. Nanoactivated Carbon Reduces Mercury Mobility and Uptake by Oryza Sativa L: Mechanistic Investigation Using Spectroscopic and Microscopic Techniques. Environ. Sci. Technol., 54(5): 2698-2706. https://doi.org/10.1021/acs.est.9b05685
      Wang, J. J., Guo, Y. Y., Guo, D. L., et al., 2012. Fine Root Mercury Heterogeneity: Metabolism of Lower- Order Roots as an Effective Route for Mercury Removal. Environ. Sci. Technol., 46(2): 769-777. https://doi.org/10.1021/es2018708
      Wang, X., Luo, J., Yuan, W., et al., 2020b. Global Warming Accelerates Uptake of Atmospheric Mercury in Regions Experiencing Glacier Retreat. PNAS, 117(4): 2049-2055. https://doi.org/10.1073/pnas.1906930117
      Wang, X., Yuan, W., Lin, C. J., et al., 2020c. Underestimated Sink of Atmospheric Mercury in a Deglaciated Forest Chronosequence. Environmental Science & Technology, 54(13): 8083-8093. https://doi.org/10.1021/acs.est.0c01667
      Wang, X., Bao, Z., Lin, C. J., et al., 2016. Assessment of Global Mercury Deposition through Litterfall. Environmental Science & Technology, 50(16): 8548-8557. https://doi.org/10.1021/acs.est.5b06351
      Wang, X., Luo, J., Yin, R., et al., 2017a. Using Mercury Isotopes to Understand Mercury Accumulation in the Montane Forest Floor of the Eastern Tibetan Plateau. Environ. Sci. Technol., 51(2): 801-809. https://doi.org/10.1021/acs.est.6b03806
      Wang, X., Yuan, W., Feng, X., 2017b. Global Review of Mercury Biogeochemical Processes in Forest Ecosystems. Progress in Chemistry, 29: 970-980.
      Wang, X., Yuan, W., Lin, C. J., et al., 2019. Climate and Vegetation as Primary Drivers for Global Mercury Storage in Surface Soil. Environmental Science & Technology, 53(18): 10665-10675. https://doi.org/10.1021/acs.est.9b02386
      Wang, X., Yuan, W., Lin, C. J., et al., 2021. Stable Mercury Isotopes Stored in Masson Pinus Tree Rings as Atmospheric Mercury Archives. J. Hazard. Mater., 415: 125678. https://doi.org/10.1016/j.jhazmat.2021.125678
      Wei, Y., Yang, B., Xia, H. D., et al., 2021. Paleovegetation and Paleoclimate during Mid-Late Eocene in Fushun Basin. Earth Science, 46(5): 1848-1861 (in Chinese with English abstract).
      Wohlgemuth, L., Rautio, P., Ahrends, B., et al., 2022. Physiological and Climate Controls on Foliar Mercury Uptake by European Tree Species. Biogeosciences, 19: 1335-1353. doi: 10.5194/bg-19-1335-2022
      Wright, L. P., Zhang, L., Marsik, F. J., 2016. Overview of Mercury Dry Deposition, Litterfall, and Throughfall Studies. Atmospheric Chemistry and Physics, 16: 13399-13416. doi: 10.5194/acp-16-13399-2016
      Yang, Y., Yanai, R. D., Montesdeoca, M., et al., 2017. Measuring Mercury in Wood: Challenging But Important. International Journal of Environmental Analytical Chemistry, 97(5): 456-467. https://doi.org/10.1080/03067319.2017.1324852
      Yuan, S. L., Chen, J. B., Hintelmann, H., et al., 2022. Event-Based Atmospheric Precipitation Uncovers Significant Even and Odd Hg Isotope Anomalies Associated with the Circumpolar Vortex. Environmental Science & Technology, 56(17): 12713-12722. https://doi.org/10.1021/acs.est.2c02613
      Yuan, W., Sommar, J., Lin, C. J., et al., 2019. Stable Isotope Evidence Shows Re-Emission of Elemental Mercury Vapor Occurring after Reductive Loss from Foliage. Environ. Sci. Technol., 53(2): 651-660. https://doi.org/10.1021/acs.est.8b04865
      Zeng, S., Wang, X., Yuan, W., et al., 2022. Mercury Accumulation and Dynamics in Montane Forests along an Elevation Gradient in Southwest China. Journal of Environmental Sciences (China), 119: 1-10. https://doi.org/10.1016/j.jes.2021.10.015
      Zhang, Y., Song, Z., Huang, S., et al., 2021. Global Health Effects of Future Atmospheric Mercury Emissions. Nature Communications, 12(1): 3035. https://doi.org/10.1038/s41467-021-23391-7
      Zheng, W., Hintelmann, H., 2009. Mercury Isotope Fractionation during Photoreduction in Natural Water is Controlled by Its Hg/DOC Ratio. Geochimica et Cosmochimica Acta, 73: 6704-6715. doi: 10.1016/j.gca.2009.08.016
      Zheng, W., Hintelmann, H., 2010. Isotope Fractionation of Mercury during Its Photochemical Reduction by Low-Molecular-Weight Organic Compounds. The Journal of Physical Chemistry A, 114(12): 4246-4253. https://doi.org/10.1021/jp9111348
      Zheng, W., Obrist, D., Weis, D., et al., 2016. Mercury Isotope Compositions across North American Forests. Global Biogeochemical Cycles, 30: 1475-1492. doi: 10.1002/2015GB005323
      Zhou, J., Obrist, D., 2021. Global Mercury Assimilation by Vegetation. Environmental Science & Technology, 55(20): 14245-14257. https://doi.org/10.1021/acs.est.1c03530
      Zhou, J., Obrist, D., Dastoor, A., et al., 2021. Vegetation Uptake of Mercury and Impacts on Global Cycling. Nature Reviews Earth & Environment, 2(4): 269-284.
      Zhu, W., Lin, C. J., Wang, X., et al., 2016. Global Observations and Modeling of Atmosphere-Surface Exchange of Elemental Mercury: A Critical Review. Atmospheric Chemistry and Physics, 16: 4451-4480.
      Zhu, W., Sommar, J., Lin, C. J., et al., 2015a. Mercury Vapor Air-Surface Exchange Measured by Collocated Micrometeorological and Enclosure Methods-Part I: Data Comparability and Method Characteristics. Atmospheric Chemistry and Physics, 15: 685-702. doi: 10.5194/acp-15-685-2015
      Zhu, W., Sommar, J., Lin, C. J., et al., 2015b. Mercury Vapor Air-Surface Exchange Measured by Collocated Micrometeorological and Enclosure Methods-Part Ⅱ: Bias and Uncertainty Analysis. Atmospheric Chemistry and Physics, 15: 5359-5376. doi: 10.5194/acp-15-5359-2015
      冯新斌, 陈玖斌, 付学吾, 等, 2013. 汞的环境地球化学研究进展. 矿物岩石地球化学通报, 32(5): 503-530. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201305001.htm
      冯新斌, 付学吾, Jonas, S., 等, 2011. 地表自然过程排汞研究进展及展望. 生态学杂志, 30(5): 845-856. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201105002.htm
      毛欣, 刘林敬, 宋磊, 等, 2021. 白洋淀近70年生态环境演化过程及影响因素. 地球科学, 46(7): 2609-2620. doi: 10.3799/dqkx.2020.203
      韦一, 杨兵, 夏浩东, 等, 2021. 抚顺盆地中-晚始新世古植被与古气候. 地球科学, 46(5): 1848-1861. doi: 10.3799/dqkx.2020.142
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(1)

      Article views (2067) PDF downloads(141) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return