• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 11
    Nov.  2022
    Turn off MathJax
    Article Contents
    Lin Wei, Shen Jianxun, Pan Yongxin, 2022. On Astrobiological Research in China. Earth Science, 47(11): 4108-4113. doi: 10.3799/dqkx.2022.883
    Citation: Lin Wei, Shen Jianxun, Pan Yongxin, 2022. On Astrobiological Research in China. Earth Science, 47(11): 4108-4113. doi: 10.3799/dqkx.2022.883

    On Astrobiological Research in China

    doi: 10.3799/dqkx.2022.883
    • Received Date: 2022-10-24
      Available Online: 2022-12-07
    • Publish Date: 2022-11-25
    • The search for extraterrestrial habitable environments and signs of life is one of the major scientific objectives of deep space exploration. As a disciplinary regime that studies the origin, evolution, distribution, and future of life associated with the evolution of planetary systems, astrobiology systematically enlists practices across multiple disciplines, such as earth science, life science, space science, astronomy, and chemistry. In recent decades, the research of astrobiology has been progressively extended as the understanding of other celestial bodies is improved. Here we review the research content and development of astrobiology, discuss relevant opportunities and challenges in China, and provide prospects for the future.

       

    • loading
    • Baross, J. A., Anderson, R. E., Stüeken, E. E., 2020. The Environmental Roots of the Origin of Life. In: Meadows, V. S., Arney, G. N., Schmidt, B. E., et al., eds., Planetary Astrobiology. University of Arizona Press, Tucson, 71-92.
      Board, S. S., 2019. National Academies of Sciences, Engineering, and Medicine: An Astrobiology Strategy for the Search for Life in the Universe. National Academies Press, Washington.
      Bottke, W. F., Norman, M. D., 2017. The Late Heavy Bombardment. Annu. Rev. Earth Pl. Sc., 45: 619-647. https://doi.org/10.1146/annurev-earth-063016-020131
      Cabrol, N. A., 2018. The Coevolution of Life and Environment on Mars: An Ecosystem Perspective on the Robotic Exploration of Biosignatures. Astrobiology, 18(1): 1-27. https://doi.org/10.1089/ast.2017.1756
      Chan, M. A., Hinman, N. W., Potter-McIntyre, S. L., et al., 2019. Deciphering Biosignatures in Planetary Contexts. Astrobiology, 19(9): 1075-1102. https://doi.org/10.1089/ast.2018.1903
      Chen, J. W., Ge, J. W., Feng, L., et al., 2020. Methane Flux Characteristics and Its Relationship with Soil Microbial Community Composition of Dajiuhu Peatland in Shennongjia. Earth Science, 45(3): 1082-1092 (in Chinese with English abstract).
      Conrad, P. G., Archer, D., Atreya, S., et al., 2013. Habitability Assessment at Gale Crater: Implications from Initial Results. 44th Lunar and Planetary Science Conference, Woodlands.
      Dundas, C. M., McEwen, A. S., Chojnacki, M., et al., 2017. Granular Flows at Recurring Slope Lineae on Mars Indicate a Limited Role for Liquid Water. Nat. Geosci., 10: 903-907. https://doi.org/10.1038/s41561-017-0012-5
      Ehlmann, B. L., Edwards, C. S., 2014. Mineralogy of the Martian Surface. Annual Review of Earth and Planetary Sciences, 42: 291-315. https://doi.org/10.1146/annurev-earth-060313-055024
      Eigenbrode, J. L., Summons, R. E., Steele, A., et al., 2018. Organic Matter Preserved in 3-Billion-Year-Old Mudstones at Gale Crater, Mars. Science, 360(6393): 1096-1101. https://doi.org/10.1126/science.aas9185
      Geng, Y., Zhang, R. Q., He, R. W., et al., 2022. The Science-Technology and Management Innovation for China's First Mars Exploration Mission. Frontiers of Science and Technology of Engineering Management, 41(1): 3-8 (in Chinese with English abstract).
      Gibney, E., 2022. Asteroids, Hubble Rival and Moon Base: China Sets out Space Agenda. Nature, 603(7899): 19-20. https://doi.org/10.1038/d41586-022-00439-2
      Green, J., Hoehler, T., Neveu, M., et al., 2021. Call for a Framework for Reporting Evidence for Life beyond Earth. Nature, 598(7882): 575-579. https://doi.org/10.1038/s41586-021-03804-9
      Hansen, C. J., Castillo-Rogez, J., Grundy, W., et al., 2021. Triton: Fascinating Moon, Likely Ocean World, Compelling Destination! The Planetary Science Journal, 2: 137. https://doi.org/10.3847/psj/abffd2
      Hays, L., Archenbach, L., Bailey, J., et al., 2015. NASA Astrobiology Strategy. NASA, Washington.
      Hendrix, A. R., Hurford, T. A., Barge, L. M., et al., 2019. The NASA Roadmap to Ocean Worlds. Astrobiology, 19(1): 1-27. https://doi.org/10.1089/ast.2018.1955
      Hoehler, T. M., Bains, W., Davila, A., et al., 2020. Life's Requirements, Habitability, and Biological Potential. In: Meadows, V. S., Arney, G. N., Schmidt, B. E., et al., eds., Planetary Astrobiology. University of Arizona Press, Arizona, 37-70.
      Jakosky, B. M., Brain, D., Chaffin, M., et al., 2018. Loss of the Martian Atmosphere to Space: Present-Day Loss Rates Determined from MAVEN Observations and Integrated Loss through Time. Icarus, 315: 146-157. https://doi.org/10.1016/j.icarus.2018.05.030
      Jia, X., Kivelson, M. G., 2021. The Magnetosphere of Ganymede. In: Maggiolo, R., André, N., Hasegawa, H., et al., eds., Magnetospheres in the Solar System. Wiley, Hoboken, 557-573. https://doi.org/10.1002/9781119815624.ch35
      Kivelson, M. G., Khurana, K. K., Volwerk, M., 2009. Europa's Interaction with the Jovian Magnetosphere. In: Pappalardo, R. T., McKinnon, W. B., Khurana, K. K., eds., Europa. University of Arizona Press, Arizona, 545-570.
      Klein, H. P., Horowitz, N. H., Levin, G. V., et al., 1976. The Viking Biological Investigation: Preliminary Results. Science, 194(4260): 99-105. https://doi.org/10.1126/science.194.4260.99
      Kminek, G., Meyer, M. A., Beaty, D. W., et al., 2022. Mars Sample Return (MSR): Planning for Returned Sample Science. Astrobiology, 22: S1-S4. doi: 10.1089/ast.2021.0198
      Knauth, L. P., Burt, D. M., Wohletz, K. H., 2005. Impact Origin of Sediments at the Opportunity Landing Site on Mars. Nature, 438(7071): 1123-1128. https://doi.org/10.1038/nature04383
      Koonin, E. V., Dolja, V. V., Krupovic, M., et al., 2021. Viruses Defined by the Position of the Virosphere within the Replicator Space. Microbiol. Mol. Biol. Rev., 85(4): e0019320. https://doi.org/10.1128/mmbr.00193-20
      Korablev, O., Vandaele, A. C., Montmessin, F., et al., 2019. No Detection of Methane on Mars from Early ExoMars Trace Gas Orbiter Observations. PLoS One, 568(7753): 517-520. https://doi.org/10.1038/s41586-019-1096-4
      Li, C., Zheng, Y., Wang, X., et al., 2022. Layered Subsurface in Utopia Basin of Mars Revealed by Zhurong Rover Radar. Nature, 610(7931): 308-312. https://doi.org/10.1038/s41586-022-05147-5
      Lin, W., Li, Y. L., Wang, G. H., et al., 2020. Overview and Perspectives of Astrobiology. Chinese Science Bulletin, 65(5): 380-391 (in Chinese). doi: 10.1360/TB-2019-0396
      Liu, J. J., Li, C. L., Zhang, R. Q., et al., 2021. Geomorphic Contexts and Science Focus of the Zhurong Landing Site on Mars. Nature Astronomy, 6: 65-71. https://doi.org/10.1038/s41550-021-01519-5
      Liu, R., Ma, T., Qiu, W., et al., 2020. The Environmental Functions and Ecological Effects of Organic Carbon in Silt. Journal of Earth Science, 31(6): 834-844. https://doi.org/10.1007/s12583-020-1349-z
      Liu, Y., Wu, X., Zhao, Y. S., et al., 2022. Zhurong Reveals Recent Aqueous Activities in Utopia Planitia, Mars. Science Advances, 8(19): eabn8555. https://doi.org/10.1126/sciadv.abn8555
      Lopes, R. M. C., Kirk, R. L., Mitchell, K. L., et al., 2013. Cryovolcanism on Titan: New Results from Cassini RADAR and VIMS. J. Geophys. Res-Planet., 118: 416-435. 10.1002/jgre. 20062 doi: 10.1002/jgre.20062
      McKay, D. S., Gibson, E. K., Thomas-Keprta, K. L., et al., 1996. Search for Past Life on Mars: Possible Relic Biogenic Activity in Martian Meteorite ALH84001. Science, 273(5277): 924-930. https://doi.org/10.1126/science.273.5277.924
      Ménez, B., Pisapia, C., Andreani, M., et al., 2018. Abiotic Synthesis of Amino Acids in the Recesses of the Oceanic Lithosphere. Nature, 564(7734): 59-63. https://doi.org/10.1038/s41586-018-0684-z
      Mojzsis, S. J., 2021. Habitable Potentials. Nature Astronomy, 5: 1083-1085. https://doi.org/10.1038/s41550-021-01529-3
      Nakamura, E., Kobayashi, K., Tanaka, R., et al., 2022. On the Origin and Evolution of the Asteroid Ryugu: A Comprehensive Geochemical Perspective. Proceedings of the Japan Academy Series B, Physical and Biological Sciences, 98(6): 227-282. https://doi.org/10.2183/pjab.98.015
      Onstott, T. C., Ehlmann, B. L., Sapers, H., et al., 2019. Paleo-Rock-Hosted Life on Earth and the Search on Mars: A Review and Strategy for Exploration. Astrobiology, 19(10): 1230-1262. https://doi.org/10.1089/ast.2018.1960
      Pan, Y. X., Wang, C., 2021. Developing the Planetary Science Research for the Sustainable Deep Space Exploration of China. Bulletin of National Natural Science Foundation of China, 35(2): 181-185 (in Chinese with English abstract).
      Postberg, F., Khawaja, N., Abel, B., et al., 2018. Macromolecular Organic Compounds from the Depths of Enceladus. Nature, 558(7711): 564-568. https://doi.org/10.1038/s41586-018-0246-4
      Rampe, E. B., Blake, D. F., Bristow, T. F., et al., 2020. Mineralogy and Geochemistry of Sedimentary Rocks and Eolian Sediments in Gale Crater, Mars: A Review after Six Earth Years of Exploration with Curiosity. Geochemistry, 80: 125605. https://doi.org/10.1016/j.chemer.2020.125665
      Schulze-Makuch, D., Mendez, A., Fairen, A. G., et al., 2011. A Two-Tiered Approach to Assessing the Habitability of Exoplanets. Astrobiology, 11: 1041-1052. https://doi.org/10.1089/ast.2010.0592
      Shen, J., Chen, Y., Sun, Y., et al., 2022. Detection of Biosignatures in Terrestrial Analogs of Martian Regions: Strategical and Technical Assessments. Earth and Planetary Physics, 6(5): 431-450. https://doi.org/10.26464/epp2022042
      Soffen, G. A., 1997. Astrobiology from Exobiology: Viking and the Current Mars Probes. Acta Astronautica, 41(4-10): 609-611. https://doi.org/10.1016/s0094-5765(98)00055-1
      Solomon, S. C., Aharonson, O., Aurnou, J. M., et al., 2005. New Perspectives on Ancient Mars. Science, 307: 1214-1220. https://doi.org/10.1126/science.1101812
      Squyres, S. W., Arvidson, R. E., Ruff, S., et al., 2008. Detection of Silica-Rich Deposits on Mars. Science, 320(5879): 1063-1067. https://doi.org/10.1126/science.1155429
      Webster, C. R., Mahaffy, P. R., Atreya, S. K., et al., 2018. Background Levels of Methane in Mars' Atmosphere Show Strong Seasonal Variations. Science, 360(6393): 1093-1096. https://doi.org/10.1126/science.aaq0131
      Weller, M. B., Lenardic, A., 2018. On the Evolution of Terrestrial Planets: Bi-Stability, Stochastic Effects, and the Non-Uniqueness of Tectonic States. Geosci. Front., 9: 91-102. https://doi.org/10.1016/j.gsf.2017.03.001
      Ye, P. J., Zou, L. Y., Wang, D. Y., et al., 2018. Development and Prospect of Chinese Deep Space Exploration. Space International, (10): 4-10 (in Chinese).
      谌佳伟, 葛继稳, 冯亮, 等, 2020. 神农架大九湖泥炭湿地甲烷通量特征及其与土壤微生物群落组成的关系. 地球科学, 45(3): 1082-1092. doi: 10.3799/dqkx.2019.289
      耿言, 张荣桥, 赫荣伟, 等, 2022. 首次火星探测任务的科技与管理创新. 工程管理科技前沿, 41(1): 3-8. https://www.cnki.com.cn/Article/CJFDTOTAL-YUCE202201002.htm
      林巍, 李一良, 王高鸿, 等, 2020. 天体生物学研究进展和发展趋势. 科学通报, 65(5): 380-391. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202005009.htm
      潘永信, 王赤, 2021. 国家深空探测战略可持续发展需求: 行星科学研究. 中国科学基金, 35(2): 181-185. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJJ202102004.htm
      叶培建, 邹乐洋, 王大轶, 等, 2018. 中国深空探测领域发展及展望. 国际太空, (10): 4-10. https://www.cnki.com.cn/Article/CJFDTOTAL-GJTK201810002.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索
      Article views (1963) PDF downloads(131) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return