Citation: | Wang Jinhan, Shi Xuhua, Chen Hanlin, Yang Rong, Zhang Fengqi, Cheng Xiaogan, Rao Gang, Deng Hongdan, Gong Junfeng, Shu Yuanhai, Bai Zhuona, 2023. V-Shaped Conjugate Strike-Slip Faults: Characteristics, Formation Mechanisms and Implications for the Late Cenozoic Deformation in the Southeastern Tibetan Plateau. Earth Science, 48(4): 1421-1440. doi: 10.3799/dqkx.2023.019 |
Aktug, B., Ozener, H., Dogru, A., et al., 2016. Slip Rates and Seismic Potential on the East Anatolian Fault System Using an Improved GPS Velocity Field. Journal of Geodynamics, 94/95: 1-12. https://doi.org/10.1016/j.jog.2016.01.001
|
Ambraseys, N. N., 1970. Some Characteristic Features of the Anatolian Fault Zone. Tectonophysics, 9(2/3): 143-165. https://doi.org/10.1016/0040-1951(70)90014-4
|
Anderson, T. B., 1964. Kink-Bands and Related Geological Structures. Nature, 202(4929): 272-274. https://doi.org/10.1038/202272a0
|
Andrew, J. E., Walker, J. D., Monastero, F. C., 2015. Evolution of the Central Garlock Fault Zone, California: A Major Sinistral Fault Embedded in a Dextral Plate Margin. Geological Society of America Bulletin, 127(1-2): 227-249. https://doi.org/10.1130/b31027.1
|
Arpat, E., Şaroglu, F., 1972. The East Anatolian Fault System: Thoughts on Its Development. Bulletin of the Mineral Research Exploration, 78(78): 1-12.
|
Barka, A. A., Hancock, P. L., 1984. Neotectonic Deformation Patterns in the Convex-Northwards Arc of the North Anatolian Fault Zone. Geological Society, London, Special Publications, 17(1): 763-774. https://doi.org/10.1144/gsl.sp.1984.017.01.61
|
Barka, A. A., Kadinsky-Cade, K., 1988. Strike-Slip Fault Geometry in Turkey and Its Influence on Earthquake Activity. Tectonics, 7(3): 663-684. https://doi.org/10.1029/TC007i003p00663
|
Bian, S., Gong, J., Zuza, A. V., et al., 2020. Late Pliocene Onset of the Cona Rift, Eastern Himalaya, Confirms Eastward Propagation of Extension in Himalayan-Tibetan Orogen. Earth and Planetary Science Letters, 544: 116383. https://doi.org/10.1016/j.epsl.2020.116383
|
Boyd, O. S., Mueller, C. S., Rukstales, K. S., 2007. Preliminary Earthquake Hazard Map of Afghanistan. US Geological Survey Open-File Report, 1137.
|
Burbank, D. W., Whistler, D. P., 1987. Temporally Constrained Tectonic Rotations Derived from Magnetostratigiraphic Data: Implications for the Initiation of the Garlock Fault, California. Geology, 15(12): 1172. https://doi.org/10.1130/0091-7613(1987)151172:tctrdf>2.0.co;2 doi: 10.1130/0091-7613(1987)151172:tctrdf>2.0.co;2
|
Byerlee, J., 1978. Friction of Rocks. Pure and Applied Geophysics PAGEOPH, 116(4-5): 615-626. https://doi.org/10.1007/bf00876528
|
Catchings, R. D., 2002. High-Resolution Seismic Velocities and Shallow Structure of the San Andreas Fault Zone at Middle Mountain, Parkfield, California. Bulletin of the Seismological Society of America, 92(6): 2493-2503. https://doi.org/10.1785/0120010263
|
Cetin, H., Güneyli, H., Mayer, L., 2003. Paleoseismology of the Palu-Lake Hazar Segment of the East Anatolian Fault Zone, Turkey. Tectonophysics, 374(3/4): 163-197. https://doi.org/10.1016/j.tecto.2003.08.003
|
Chen, G. F., Bartholomew, M., Liu, D. M., et al., 2022. Paleo-Earthquakes along the Zheduotang Fault, Xianshuihe Fault System, Eastern Tibet: Implications for Seismic Hazard Evaluation. Journal of Earth Science, 33(5): 1233-1245. https://doi.org/10.1007/s12583-022-1687-0
|
Chen, M., Huang, H., Yao, H., et al., 2014. Low Wave Speed Zones in the Crust beneath SE Tibet Revealed by Ambient Noise Adjoint Tomography. Geophysical Research Letters, 41(2): 334-340. https://doi.org/10.1002/2013gl058476
|
Chevalier, M. L., Leloup, P. H., Replumaz, A., et al., 2016. Tectonic-Geomorphology of the Litang Fault System, SE Tibetan Plateau, and Implication for Regional Seismic Hazard. Tectonophysics, 682: 278-292. https://doi.org/10.1016/j.tecto.2016.05.039
|
Chorowicz, J., Dhont, D., Gündoğdu, N., 1999. Neotectonics in the Eastern North Anatolian Fault Region (Turkey) Advocates Crustal Extension: Mapping from SARERS Imagery and Digital Elevation Model. Journal of Structural Geology, 21(5): 511-532. https://doi.org/10.1016/S0191-8141(99)00022-X
|
Clark, M. K., House, M. A., Royden, L. H., et al., 2005. Late Cenozoic Uplift of Southeastern Tibet. Geology, 33(6): 525. https://doi.org/10.1130/g21265.1
|
Cloos, E., 1955. Experimental Analysis of Fracture Patterns. Geological Society of America Bulletin, 66(3): 241. https://doi.org/10.1130/0016-7606(1955)66[241:eaofp]2.0.co;2
|
Cooke, M. L., Dair, L. C., 2011. Simulating the Recent Evolution of the Southern Big Bend of the San Andreas Fault, Southern California. Journal of Geophysical Research: Solid Earth, 116(B4): B04405. https://doi.org/10.1029/2010JB007835
|
Crane, T.M., 2014. Qualitative Comparison of Offset Surfaces between the Central and Eastern Garlock Fault. Electronic Theses, Projects, and Dissertations, 119.
|
Davis, G. A., Burchfiel, B. C., 1973. Garlock Fault: An Intracontinental Transform Structure, Southern California. Geological Society of America Bulletin, 84(4): 1407. https://doi.org/10.1130/0016-7606(1973)841407:gfaits>2.0.co;2 doi: 10.1130/0016-7606(1973)841407:gfaits>2.0.co;2
|
Dawson, T. E., McGill, S. F., Rockwell, T. K., 2003. Irregular Recurrence of Paleoearthquakes along the Central Garlock Fault near El Paso Peaks, California. Journal of Geophysical Research: Solid Earth, 108(B7): 2356. https://doi.org/10.1029/2001JB001744
|
Dickinson, W. R., Wernicke, B. P., 1997. Reconciliation of San Andreas Slip Discrepancy by a Combination of Interior Basin and Range Extension and Transrotation near the Coast. Geology, 25(7): 663. https://doi.org/10.1130/0091-7613(1997)0250663:rosasd>2.3.co;2 doi: 10.1130/0091-7613(1997)0250663:rosasd>2.3.co;2
|
Dixon, T. H., Xie, S., 2018. A Kinematic Model for the Evolution of the Eastern California Shear Zone and Garlock Fault, Mojave Desert, California. Earth and Planetary Science Letters, 494: 60-68. https://doi.org/10.1016/j.epsl.2018.04.050
|
Dolan, J. F., McAuliffe, L. J., Rhodes, E. J., et al., 2016. Extreme Multi-Millennial Slip Rate Variations on the Garlock Fault, California: Strain Super-Cycles, Potentially Time-Variable Fault Strength, and Implications for System-Level Earthquake Occurrence. Earth and Planetary Science Letters, 446: 123-136. https://doi.org/10.1016/j.epsl.2016.04.011
|
DuRoss, C.B., Gold, R.D., Dawson, T.E., et al., 2020. Surface Displacement Distributions for the July 2019 Ridgecrest, California, Earthquake Ruptures. Bulletin of the Seismological Society of America, 110(4): 1400-1418. https://doi.org/10.1785/0120200058
|
Fialko, Y., 2006. Interseismic Strain Accumulation and the Earthquake Potential on the Southern San Andreas Fault System. Nature, 441(7096): 968-971. https://doi.org/10.1038/nature04797
|
Fialko, Y., Jin, Z. Y., 2021. Simple Shear Origin of the Cross-Faults Ruptured in the 2019 Ridgecrest Earthquake Sequence. Nature Geoscience, 14(7): 513-518. https://doi.org/10.1038/s41561-021-00758-5
|
Fossen, H., 2016. Structural Geology. Cambridge University Press, Cambridge.
|
Freund, R., 1970. Rotation of Strike Slip Faults in Sistan, Southeast Iran. The Journal of Geology, 78(2): 188-200. https://doi.org/10.1086/627500
|
Gan, W. J., Zhang, P. Z., Shen, Z. K., et al., 2007. Present-Day Crustal Motion within the Tibetan Plateau Inferred from GPS Measurements. Journal of Geophysical Research: Solid Earth, 112(B8): B08416. https://doi.org/10.1029/2005jb004120
|
Ganev, P. N., Dolan, J. F., McGill, S. F., et al., 2012. Constancy of Geologic Slip Rate along the Central Garlock Fault: Implications for Strain Accumulation and Release in Southern California. Geophysical Journal International, 190(2): 745-760. https://doi.org/10.1111/j.1365-246X.2012.05494.x
|
Garthwaite, M. C., Wang, H., Wright, T. J., 2013. Broadscale Interseismic Deformation and Fault Slip Rates in the Central Tibetan Plateau Observed Using InSAR. Journal of Geophysical Research: Solid Earth, 118(9): 5071-5083. https://doi.org/10.1002/jgrb.50348
|
George, I. S., 1962. Large Lateral Displacement on Garlock Fault, Califonia, as Measured from Offset Dike Swarm. AAPG Bulletin, 46. https://doi.org/10.1306/bc74375f-16be-11d7-8645000102c1865d
|
Gómez-Rivas, E., Carreras, J., 2008. Localization of Deformation in Ductile and Anisotropic Media: Field, Experimental and Numerical Study (Dissertation). Autonomous University of Barcelona, Spain.
|
Hatem, A. E., Dolan, J. F., 2018. A Model for the Initiation, Evolution, and Controls on Seismic Behavior of the Garlock Fault, California. Geochemistry, Geophysics, Geosystems, 19(7): 2166-2178. https://doi.org/10.1029/2017GC007349
|
He, X., Zhao, L. F., Xie, X. B., et al., 2021. Weak Crust in Southeast Tibetan Plateau Revealed by Lg-Wave Attenuation Tomography: Implications for Crustal Material Escape. Journal of Geophysical Research: Solid Earth, 126(3): e2020JB020748. https://doi.org/10.1029/2020JB020748
|
Hill, M. L., Dibblee, T. W., 1953. San Andreas, Garlock, and Big Pine Faults, California. Geological Society of America Bulletin, 64(4): 443. https://doi.org/10.1130/0016-7606(1953)64[443:sagabp]2.0.co;2
|
Hollingsworth, J., Wernicke, B. P., Ding, L., 2010. Fault Slip-Rate Estimate for the Right-Lateral Beng Co Strike-Slip Fault, Based on Quaternary Dating of Displaced Paleo-Lake Shorelines. AGU Fall Meeting Abstracts.
|
Hubert-Ferrari, A., Armijo, R., King, G., et al., 2002. Morphology, Displacement, and Slip Rates along the North Anatolian Fault, Turkey. Journal of Geophysical Research: Solid Earth, 107(B10): ETG9-1. https://doi.org/10.1029/2001jb000393
|
Jaeger, J. C., Cook, N., 1979. Fundamentalsof Rock Mechanics. Third Edition. Science Paperbacks, 9(3): 251-252.
|
Ketin, İ., 1969. Kuzey Anadolu Fayi Hakkinda(On the North Anatolian Fault). MTA Dergisi, 72: 1-27.
|
Khalifa, A., Çakir, Z., Owen, L., et al., 2018. Morphotectonic Analysis of the East Anatolian Fault, Turkey. Turkish Journal of Earth Sciences, 27(2): 110. https://doi.org/10.3906/yer-1707-16
|
Köküm, M., İnceöz, M., 2018. Structural Analysis of the Northern Part of the East Anatolian Fault System. Journal of Structural Geology, 114: 55-63. https://doi.org/10.1016/j.jsg.2018.06.016
|
Kozacı, Ö., Dolan, J. F., Finkel, R. C., 2009. A Late Holocene Slip Rate for the Central North Anatolian Fault, at Tahtaköprü, Turkey, from Cosmogenic 10Be Geochronology: Implications for Fault Loading and Strain Release Rates. Journal of Geophysical Research: Solid Earth, 114(B1): B01405. https://doi.org/10.1029/2008JB005760
|
Kurz, G. A., Northrup, C. J., 2008. Structural Analysis of Mylonitic Rocks in the Cougar Creek Complex, Oregon-Idaho Using the Porphyroclast Hyperbolic Distribution Method, and Potential Use of SC'-Type Extensional Shear Bands as Quantitative Vorticity Indicators. Journal of Structural Geology, 30(8): 1005-1012. https://doi.org/10.1016/j.jsg.2008.04.003
|
Lawrence, R.D., Khan, S.H., Nakata, T., 1992. Chaman Fault, Pakistan-Afghanistan. Ann. Tectonicae, 6, 196-223.
|
Leedal, G. P., Walker, G. P. L., 1954. Tear Faults in the Barnesmore Area, Donegal. Geological Magazine, 91(2): 116-120. https://doi.org/10.1017/s0016756800064980
|
Li, H.B., Yang, J.S., Xu, Z.Q., et al., 2006. The Constraint of the Altyn Tagh Fault System to the Growth and Rise of the Northern Tibetan Plateau. Earth Science Frontiers, 13(4): 59-79 (in Chinese with English abstract).
|
Li, K., Tapponnier, P., Xu, X. W., et al., 2022. Holocene Slip Rate along the Beng Co Fault and Dextral Strike-Slip Extrusion of Central Eastern Tibet. Tectonics, 41(8): e2022TC007230. https://doi.org/10.1029/2022TC007230
|
Li, Y. S., Tian, Y. F., Yu, C., et al., 2020. Present-Day Interseismic Deformation Characteristics of the Beng Co-Dongqiao Conjugate Fault System in Central Tibet: Implications from InSAR Observations. Geophysical Journal International, 221(1): 492-503. https://doi.org/10.1093/gji/ggaa014
|
Liang, C., Ampuero, J. P., Pino Muñoz, D., 2021. Deep Ductile Shear Zone Facilitates Near-Orthogonal Strike-Slip Faulting in a Thin Brittle Lithosphere. Geophysical Research Letters, 48(2): e2020GL090744. https://doi.org/10.1029/2020GL090744
|
Liu, F.C., Pan, J.W., Li, H.B., et al., 2022. Characteristics of Quaternary Activities along the Piganpei Co Fault and Seismogenic Structure of the July 23, 2020 MW6.4 Nima Earthquake, Central Tibet. Acta Geoscientica Sinica, 43(2): 173-188 (in Chinese with English abstract).
|
Loomis, D. P., Burbank, D. W., 1988. The Stratigraphic Evolution of the El Paso Basin, Southern California: Implications for the Miocene Development of the Garlock Fault and Uplift of the Sierra Nevada. Geological Society of America Bulletin, 100(1): 12-28. https://doi.org/10.1130/0016-7606(1988)1000012:tseote>2.3.co;2 doi: 10.1130/0016-7606(1988)1000012:tseote>2.3.co;2
|
Loveless, J. P., Meade, B. J., 2011. Stress Modulation on the San Andreas Fault by Interseismic Fault System Interactions. Geology, 39(11): 1035-1038. https://doi.org/10.1130/g32215.1
|
McGill, S. F., Owen, L. A., Weldon, R. J. Ⅱ, et al., 2013. Latest Pleistocene and Holocene Slip Rate for the San Bernardino Strand of the San Andreas Fault, Plunge Creek, Southern California: Implications for Strain Partitioning within the Southern San Andreas Fault System for the last ~35 k. y. Geological Society of America Bulletin, 125(1-2): 48-72. https://doi.org/10.1130/b30647.1
|
McGill, S. F., Wells, S. G., Fortner, S. K., et al., 2009. Slip Rate of the Western Garlock Fault, at Clark Wash, near Lone Tree Canyon, Mojave Desert, California. Geological Society of America Bulletin, 121(3-4): 536-554. https://doi.org/10.1130/b26123.1
|
McGill, S., Sieh, K., 1993. Holocene Slip Rate of the Central Garlock Fault in Southeastern Searles Valley, California. Journal of Geophysical Research: Solid Earth, 98(B8): 14217-14231. https://doi.org/10.1029/93JB00442
|
Mohadjer, S., Alan Ehlers, T., Bendick, R., et al., 2016. A Quaternary Fault Database for Central Asia. Natural Hazards and Earth System Sciences, 16(2): 529-542. https://doi.org/10.5194/nhess-16-529-2016
|
Mohadjer, S., Bendick, R., Ischuk, A., et al., 2010. Partitioning of India-Eurasia Convergence in the Pamir-Hindu Kush from GPS Measurements. Geophysical Research Letters, 37(4): L04305. https://doi.org/10.1029/2009gl041737
|
Molnar, P., Dayem, K. E., 2010. Major Intracontinental Strike-Slip Faults and Contrasts in Lithospheric Strength. Geosphere, 6(4): 444-467. https://doi.org/10.1130/ges00519.1
|
Monastero, F. C., Sabin, A. E., Walker, J. D., 1997. Evidence for Post-Early Miocene Initiation of Movement on the Garlock Fault from Offset of the Cudahy Camp Formation, East-Central California. Geology, 25(3): 247. https://doi.org/10.1130/0091-7613(1997)0250247:efpemi>2.3.co;2 doi: 10.1130/0091-7613(1997)0250247:efpemi>2.3.co;2
|
Naylor, M., Mandl, G. T., Supesteijn, C., 1986. Fault Geometries in Basement-Induced Wrench Faulting under Different Initial Stress States. Journal of Structural Geology, 8(7): 737-752. https://doi.org/10.1016/0191-8141(86)90022-2
|
Norris, R. J., Toy, V. G., 2014. Continental Transforms: AView from the Alpine Fault. Journal of Structural Geology, 64: 3-31. https://doi.org/10.1016/j.jsg.2014.03.003
|
Pananont, P., Herman, M. W., Pornsopin, P., et al., 2017. Seismotectonics of the 2014 Chiang Rai, Thailand, Earthquake Sequence. Journal of Geophysical Research: Solid Earth, 122(8): 6367-6388. https://doi.org/10.1002/2017jb014085
|
Platt, J. P., Passchier, C. W., 2016. Zipper Junctions: aNew Approach to the Intersections of Conjugate Strike-Slip Faults. Geology, 44(10): 795-798. https://doi.org/10.1130/g38058.1
|
Platt, J. P., Vissers, R. L. M., 1980. Extensional Structures in Anisotropic Rocks. Journal of Structural Geology, 2(4): 397-410. https://doi.org/10.1016/0191-8141(80)90002-4
|
Ranalli, G., 1995. Rheology of the Earth. 2nded. Chanman and Hall, London.
|
Ratschbacher, L., Frisch, W., Linzer, H. G., et al., 1991. Lateral Extrusion in the Eastern Alps, Part 2: Structural Analysis. Tectonics, 10(2): 257-271. https://doi.org/10.1029/90tc02623
|
Reid, A. J., Wilson, C. J. L., Phillips, D., et al., 2005. Mesozoic Cooling across the Yidun Arc, Central-Eastern Tibetan Plateau: A Reconna Issance 40Ar/39Ar Study. Tectonophysics, 398(1-2): 45-66. https://doi.org/10.1016/j.tecto.2005.01.002
|
Royden, L. H., Burchfiel, B. C., King, R. W., et al., 1997. Surface Deformation and Lower Crustal Flow in Eastern Tibet. Science, 276(5313): 788-790. https://doi.org/10.1126/science.276.5313.788
|
Ruleman, C. A., Crone, A. J., Machette, M. N., et al., 2007. Map and Database of Probable and Possible Quaternary Faults in Afghanistan. US Geological Survey Open-File Report, 1103(1).
|
Şengör, A. M. C., Görür, N., Şaroğlu, F., 1985. Strike-Slip Faulting and Related Basin Formation in Zones of Tectonic Escape: Turkey as a Case Study. Strike-Slip Deformation, Basin Formation, and Sedimentation. SEPM (Society for Sedimentary Geology), 227-264. https://doi.org/10.2110/pec.85.37.0227
|
Şengör, A. M. C., Kidd, W. S. F., 1979. Post-Collisional Tectonics of the Turkish-Iranian Plateau and a Comparison with Tibet. Tectonophysics, 55(3/4): 361-376. https://doi.org/10.1016/0040-1951(79)90184-7
|
Shi, X. H., Kirby, E., Lu, H. J., et al., 2014. Holocene Slip Rate along the Gyaring Co Fault, Central Tibet. Geophysical Research Letters, 41(16): 5829-5837. https://doi.org/10.1002/2014gl060782
|
Shnizai, Z., Matsushi, Y., Tsutsumi, H., 2020. Late Pleistocene Slip Rate of the Chaman Fault Based on 10Be Exposure Dating of Offset Geomorphic Surfaces near Kabul, Afghanistan. Tectonophysics, 795: 228593. https://doi.org/10.1016/j.tecto.2020.228593
|
Su, Z., Wang, E., Furlong, K. P., et al., 2012. Young, Active Conjugate Strike-Slip Deformation in West Sichuan: Evidence for the Stress-Strain Pattern of the Southeastern Tibetan Plateau. International Geology Review, 54(9): 991-1012. https://doi.org/10.1080/00206814.2011.583491
|
Sylvester, A. G., 1988. Strike-Slip Faults. Geological Society of America Bulletin, 100(11): 1666-1703. https://doi.org/10.1130/0016-7606(1988)1001666:ssf>2.3.co;2 doi: 10.1130/0016-7606(1988)1001666:ssf>2.3.co;2
|
Tapponnier, P., Mattauer, M., Proust, F., et al., 1981. Mesozoic Ophiolites, Sutures, and Arge-Scale Tectonic Movements in Afghanistan. Earth and Planetary Science Letters, 52(2): 355-371. https://doi.org/10.1016/0012-821x(81)90189-8
|
Tapponnier, P., Peltzer, G., Armijo, R., 1986. On the Mechanics of the Collision between India and Asia. Geological Society, London, Special Publications, 19(1): 113-157. https://doi.org/10.1144/gsl.sp.1986.019.01.07
|
Tapponnier, P., Peltzer, G., Le Dain, A. Y., et al., 1982. Propagating Extrusion Tectonics in Asia: New Insights from Simple Experiments with Plasticine. Geology, 10(12): 611-616. https://doi.org/10.1130/0091-7613(1982)10611:petian>2.0.co;2 doi: 10.1130/0091-7613(1982)10611:petian>2.0.co;2
|
Tatar, O., Poyraz, F., Gürsoy, H., et al., 2012. Crustal Deformation and Kinematics of the Eastern Part of the North Anatolian Fault Zone (Turkey) from GPS Measurements. Tectonophysics, 518/519/520/521: 55-62. https://doi.org/10.1016/j.tecto.2011.11.010
|
Taylor, M., Peltzer, G., 2006. Current Slip Rates on Conjugate Strike-Slip Faults in Central Tibet Using Synthetic Aperture Radar Interferometry. Journal of Geophysical Research: Solid Earth, 111(B12): B12402. https://doi.org/10.1029/2005jb004014
|
Taylor, M., Yin, A., Ryerson, F. J., et al., 2003. Conjugate Strike-Slip Faulting along the Bangong-Nujiang Suture Zone Accommodates Coeval East-West Extension and North-South Shortening in the Interior of the Tibetan Plateau. Tectonics, 22(4): 1044. https://doi.org/10.1029/2002tc001361
|
Tchalenko, J. S., 1970. Similarities between Shear Zones of Different Magnitudes. Geological Society of America Bulletin, 81(6): 1625-1640. https://doi.org/10.1130/0016-7606(1970)81[1625:sbszod]2.0.co;2
|
Thatcher, W., Hill, D. P., 1991. Fault Orientations in Extensional and Conjugate Strike-Slip Environments and Their Implications. Geology, 19(11): 1116. https://doi.org/10.1130/0091-7613(1991)0191116:foieac>2.3.co;2 doi: 10.1130/0091-7613(1991)0191116:foieac>2.3.co;2
|
Walters, R. J., Parsons, B., Wright, T. J., 2014. Constraining Crustal Velocity Fields with InSAR for Eastern Turkey: Limits to the Block-Like Behavior of Eastern Anatolia. Journal of Geophysical Research: Solid Earth, 119(6): 5215-5234. https://doi.org/10.1002/2013JB010909
|
Wan, T.F., 1984. Discussion on the Shear Angle of Conjugate Fractures. Geological Review, 30(2): 106-113 (in Chinese with English abstract).
|
Wang, D., Chang, H., Yin, G. M., et al., 2021. Spatial Changes in Late Quaternary Slip Rates along the Gyaring Co Fault: Implications for Strain Partitioning and Deformation Modes in Central Tibet. Tectonics, 40(5): e2020TC006110. https://doi.org/10.1029/2020TC006110
|
Wang, H., Wright, T. J., Liu-Zeng, J., et al., 2019. Strain Rate Distribution in South-Central Tibet from Two Decades of InSAR and GPS. Geophysical Research Letters, 46(10): 5170-5179. https://doi.org/10.1029/2019GL081916
|
Wang, Y. Z., Wang, E. N., Shen, Z. K., et al., 2008. GPS-Constrained Inversion of Present-Day Slip Rates along Major Faults of the Sichuan-Yunnan Region, China. Science in China Series D: Earth Sciences, 51(9): 1267-1283. https://doi.org/10.1007/s11430-008-0106-4
|
Wellman, H. W., 1954. Angle between the Principal Horizontal Stress and Transcurrent Faults. Geological Magazine, 91(5): 407-408. https://doi.org/10.1017/s001675680006581x
|
White, S. H., Burrows, S. E., Carreras, J., et al., 1980. On Mylonites in Ductile Shear Zones. Journal of Structural Geology, 2(1/2): 175-187. https://doi.org/10.1016/0191-8141(80)90048-6
|
Wilcox, R. E., Harding, T. T., Seely, D., 1973. Basic Wrench Tectonics. AAPG Bulletin, 57: 74-96. https://doi.org/10.1306/819a424a-16c5-11d7-8645000102c1865d
|
Wilson, C. J. L., Harrowfield, M. J., Reid, A. J., 2006. Brittle Modification of Triassic Architecture in Eastern Tibet: Implications for the Construction of the Cenozoic Plateau. Journal of Asian Earth Sciences, 27(3): 341-357. https://doi.org/10.1016/j.jseaes.2005.04.004
|
Wright, T., Parsons, B., Fielding, E., 2001. Measurement of Interseismic Strain Accumulation across the North Anatolian Fault by Satellite Radar Interferometry. Geophysical Research Letters, 28(10): 2117-2120. https://doi.org/10.1029/2000gl012850
|
Wu, G.H., Ma, B.S., Han, J.F., et al., 2021. Origin and Growth Mechanisms of Strike-Slip Faults in the Central Tarim Cratonic Basin, NW China. Petroleum Exploration and Development, 48(3): 510-520 (in Chinese with English abstract).
|
Xu, L. L., Rondenay, S., van der Hilst, R. D., 2007. Structure of the Crust beneath the Southeastern Tibetan Plateau from Teleseismic Receiver Functions. Physics of the Earth and Planetary Interiors, 165(3/4): 176-193. https://doi.org/10.1016/j.pepi.2007.09.002
|
Xu, X. W., Wen, X. Z., Yu, G. H., et al., 2005. Average Slip Rate, Earthquake Rupturing Segmentation and Recurrence Behavior on the Litang Fault Zone, Western Sichuan Province, China. Science in China Series D: Earth Sciences, 48(8): 1183-1196. https://doi.org/10.1360/04yd0072
|
Xu, X., Wen, X., Zheng, R., et al., 2003. Pattern of Latest Tectonic Motion and Its Dynamics for Active Blocks in Sichuan-Yunnan Region, China. Science in China Series D: Earth Sciences, 46(2): 210-226. doi. org/10.1360/03dz0017
|
Xu, Z.Q., Li, H.B., Tang, Z.M., et al., 2011. The Transformation of the Terrain Structures of the Tibet Plateau through Large-Scale Strike-Slip Faults. Acta Petrologica Sinica, 27(11): 3157-3170 (in Chinese with English abstract).
|
Yang, W., Liu, X., Chen, Z., et al., 2022. Asthenosphere Mass Movement in Qinghai-Tibetan Plateau Revealed by High-Resolution Seismic Tomography. Earth Science, 47(10): 3491-3500 (in Chinese with English abstract).
|
Yin, A., Taylor, M. H., 2011. Mechanics of V-Shaped Conjugate Strike-Slip Faults and the Corresponding Continuum Mode of Continental Deformation. Geological Society of America Bulletin, 123(9/10): 1798-1821. https://doi.org/10.1130/b30159.1
|
Zeng, Q. L., Yuan, G. X., Davies, T., et al., 2020. 10Be Dating and Seismic Origin of Luanshibao Rock Avalanche in SE Tibetan Plateau and Implications on Litang Active Fault. Landslides, 17(5): 1091-1104. https://doi.org/10.1007/s10346-019-01319-z
|
Zhang, H., Zhao, D. P., Zhao, J. M., et al., 2012. Convergence of the Indian and Eurasian Plates under Eastern Tibet Revealed by Seismic Tomography. Geochemistry, Geophysics, Geosystems, 13(6): Q06W14. https://doi.org/10.1029/2012gc004031
|
Zhang, Y. Z., Replumaz, A., Wang, G. C., et al., 2015. Timing and Rate of Exhumation along the Litang Fault System, Implication for Fault Reorganization in Southeast Tibet. Tectonics, 34(6): 1219-1243. https://doi.org/10.1002/2014tc003671
|
Zheng, Y. D., Wang, E., Zhang, J. J., et al., 2011. A Challenge to the Concept of Slip-Lines in Extrusion Tectonics. Geoscience Frontiers, 2(1): 23-34. https://doi.org/10.1016/j.gsf.2010.11.006
|
Zheng, Y.F., 1981. Preliminary Analysis of Sichuan Conjugate Fault Earthquake. Earthquake Research in Sichuan, (4): 24-28 (in Chinese with English abstract).
|
Zhou, L. Q., Zhao, C. P., Xiu, J. G., et al., 2008. Tomography of QLg in Sichuan-Yunnan Zone. Chinese Journal of Geophysics, 51(6): 1159-1167. https://doi.org/10.1002/cjg2.1312
|
Zhou, R., Xie, Y., Li, Y., et al., 2007. Late-Quaternary Activity of the Shawan Segment of the Litang Faults. Quaternary Sciences, 27(1): 45-53.
|
Zhou, R.J., Chen, G.X., Li, Y., et al., 2005. Research on Active Faults in Litang-Batang Region, Western Sichuan Province, and the Seismogenic Structures of the 1989 Batang Mw6.7 Earthquake Sware. Seismology and Geology, (1): 31-43(in Chinese with English abstract).
|
李海兵, 杨经绥, 许志琴, 等, 2006. 阿尔金断裂带对青藏高原北部生长、隆升的制约. 地学前缘, 13(4): 59-79. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200604005.htm
|
刘富财, 潘家伟, 李海兵, 等, 2022. 青藏高原中部日干配错断裂第四纪活动特征及2020年7月23日西藏尼玛Mw6.4地震发震构造分析. 地球学报, 43(2): 173-188. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB202202004.htm
|
万天丰, 1984. 关于共轭断裂剪切角的讨论. 地质论评, 30(2): 106-113. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP198402001.htm
|
邬光辉, 马兵山, 韩剑发, 等, 2021. 塔里木克拉通盆地中部走滑断裂形成与发育机制. 石油勘探与开发, 48(3): 510-520. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202103008.htm
|
许志琴, 李海兵, 唐哲民, 等, 2011. 大型走滑断裂对青藏高原地体构架的改造. 岩石学报, 27(11): 3157-3170. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201111001.htm
|
杨文采, 刘晓宇, 陈召曦, 等, 2022. 从高分辨率地震层析成像看青藏高原软流圈的物质运动. 地球科学, 47(10): 3491-3500. doi: 10.3799/dqkx.2022.871
|
郑友福, 1981. 四川共轭断裂型地震初步分析. 四川地震, (4): 24-28. https://www.cnki.com.cn/Article/CJFDTOTAL-SCHZ198104005.htm
|
周荣军, 陈国星, 李勇, 等, 2005. 四川西部理塘-巴塘地区的活动断裂与1989年巴塘6.7级震群发震构造研究. 地震地质, (1): 31-43. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200501003.htm
|