Citation: | Zhao Yuechun, Wang Quanrong, 2023. Water Release and Consolidation Model of Aquitard Considering Moving Non-Darcy Flow Interface. Earth Science, 48(9): 3494-3503. doi: 10.3799/dqkx.2023.046 |
Burland, J. B., 1990. On the Compressibility and Shear Strength of Natural Clays. Géotechnique, 40(3): 329-378. https://doi.org/10.1680/geot.1990.40.3.329
|
Hansbo, S., 1960. Consolidation of Clay with Special Reference to Influence of Vertical Sand Drains. Swedish Geotechnical Institute Proceeding, 18: 45-50.
|
Jin, B. J., Yin, K. L., Gui, L., et al., 2023. Transmission Line Pole Tower Land in Salt Lake Area Based on Remote Sensing Interpretation. Earth Science, Online (in Chinese with English abstract).
|
Lambe, T. W., Whitman, R. W., 1969. Soil Mechanics. John Wiley and Sons, New York, 553-554.
|
Li, C. X., Ma, H. T., Jin, D. D., 2019. Analytical Solution for Rheological Consolidation of Soft Clay with Threshold Hydraulic Gradient. Advanced Engineering Sciences, 51(2): 53-60 (in Chinese with English abstract).
|
Li, C. X., Wang, C. J., Wang, S., et al., 2017. Analysis on Nonlinear Consolidation of Structural Soft Soil by Considering Non-Darcian Flow. Journal of Jiangsu University (Natural Science Edition), 38(4): 472-478 (in Chinese with English abstract).
|
Li, C. X., Xie, K. H., Hu, A. F., et al., 2012. Analysis of One-Dimensional Non-Linear Consolidation with Exponential Flow. Journal of Central South University (Science and Technology), 43(7): 2789-2795 (in Chinese with English abstract).
|
Li, J., Xia, X. H., Li, M. G., et al., 2020. Nonlinear Drainage Model of Viscoelastic Aquitards Considering Non-Darcian Flow. Journal of Hydrology, 587: 124988. https://doi.org/10.1016/j.jhydrol.2020.124988
|
Li, Z. D., Shao, Y., 2017. Consolidation Characteristics of Soft Clay Ground Subject to Non-Uniformly Distributed Initial Pore Pressure. Journal of Chongqing Jiaotong University (Natural Science), 36(10): 45-50 (in Chinese with English abstract).
|
Liu, J. C., Lei, G. G., Mei, G. X., 2012. One-Dimensional Consolidation of Visco-Elastic Aquitard Due to Withdrawal of Deep-Groundwater. Journal of Central South University, 19(1): 282-286. https://doi.org/10.1007/s11771-012-1002-9
|
Liu, Z. Y., Cui, P. L., Zheng, Z. L., et al., 2019. Analysis of One-Dimensional Rheological Consolidation with Flow Described by Non-Newtonian Index and Fractional-Order Merchant's Model. Rock and Soil Mechanics, 40(6): 2029-2038 (in Chinese with English abstract).
|
Lo, K. Y., 1961. Secondary Compression of Clays. Journal of the Soil Mechanics and Foundations Division, 87(4): 61-88. https://doi.org/10.1061/jsfeaq.0000365
|
Lu, C. R., Cao, Y., Jiang, J., et al., 2017. Long-Term Surface Settlement of Shield Tunnel in Visco-Elastic Soft Soil. Low Temperature Architecture Technology, 39(5): 64-67 (in Chinese with English abstract).
|
Luo, Z. J., Wang, X., Dai, J., et al., 2023. Research on the Influence of Land Subsidence on the Minable Groundwater Resources. Earth Science, Online (in Chinese with English abstract).
|
Song, X. J., Qian, C. F., 2010. Analysis of Hydraulic Gradient of Cohesive Soil in Water Seepage. South-to-North Water Transfers and Water Science & Technology, 8(5): 65-67 (in Chinese with English abstract).
|
Sridharan, A., Prakash, K., 2001. Consolidation and Permeability Behavior of Segregated and Homogeneous Sediments. Geotechnical Testing Journal, 24(1): 109-120. https://doi.org/10.1520/gtj11287j
|
Tavenas, F., Jean, P., Leblond, P., et al., 1983. The Permeability of Natural Soft Clays. Part Ⅱ: Permeability Characteristics. Canadian Geotechnical Journal, 20(4): 645-660. https://doi.org/10.1139/t83-073
|
Taylor, D. W., Merchant, W., 1940. A Theory of Clay Consolidation Accounting for Secondary Compression. Journal of Mathematics and Physics, 19(1-4): 167-185. https://doi.org/10.1002/sapm1940191167
|
Terzaghi, K., 1924. Die Theorie der Hydrodynamischen Spannungerscheinungen und Ihr Erdbautechnisches Anwendungsgebiet. Proceedings of the first International Congress for Applied Mechanics, Delft.
|
Wang, S., Li, C. X., Jin, D. D., 2018. Analysis on the Consolidation of Non-Homogeneous Soil with Non-Darcian Flow Law. Chinese Journal of Applied Mechanics, 35(2): 285-291, 449 (in Chinese with English abstract).
|
Wang, S. Y., 1981. One Dimensional Consolidation of Viscoelastic Material under Variable Load. Hydro-Science and Engineering, (2): 10-17 (in Chinese with English abstract).
|
Xie, H. L., Wu, Q., Zhao, Z. M., et al., 2007. Consolidation Computation of Aquitard Considering Non-Darcy Flow. Rock and Soil Mechanics, 28(5): 1061-1065 (in Chinese with English abstract).
|
Xie, K. H., 1994. Theory of one Dimensional Consolidation of Double-Layered Ground and Its Applications. Chinese Journal of Geotechnical Engineering, 16(5): 24-35 (in Chinese with English abstract).
|
Xu, H. Y., Zhou, Z. F., Gao, Z. Q., 2011. Experimental Research of Hysteresis Effect of Land Subsidence Caused by Water Releasing. Chinese Journal of Rock Mechanics and Engineering, 30(S2): 3595-3601 (in Chinese with English abstract).
|
Xu, J., Yang, W. T., Chen, Z., et al., 2021. One-Dimensional Viscoelastic Consolidation Analysis of Aquifer-Aquitard Due to Drawdown of Water Level. Advanced Engineering Sciences, 53(5): 89-97 (in Chinese with English abstract).
|
Yang, W. T., Xu, J., Wang, S. W., 2020. Experimental Study on Rheological Models of Saturated Clay with Weak Permeability. Journal of Yantai University (Natural Science and Engineering Edition), 33(2): 225-231 (in Chinese with English abstract).
|
金必晶, 殷坤龙, 桂蕾, 等, 2023. 基于遥感解译的盐湖地区输电线路杆塔地面沉降易发性评价. 地球科学, 在线发表.
|
李传勋, 马浩天, 金丹丹, 2019. 考虑起始水力坡降的软黏土流变固结解析解. 工程科学与技术, 51(2): 53-60. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201902007.htm
|
李传勋, 王昌建, 王素, 等, 2017. 考虑非达西渗流的结构性软土非线性固结分析. 江苏大学学报(自然科学版), 38(4): 472-478. https://www.cnki.com.cn/Article/CJFDTOTAL-JSLG201704017.htm
|
李传勋, 谢康和, 胡安峰, 等, 2012. 基于指数形式渗流下的软土一维非线性固结分析. 中南大学学报(自然科学版), 43(7): 2789-2795. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201207048.htm
|
李之达, 邵玉, 2017. 基于初始孔压非均布条件的软黏土地基固结特性分析. 重庆交通大学学报(自然科学版), 36(10): 45-50. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201710008.htm
|
刘忠玉, 崔鹏陆, 郑占垒, 等, 2019. 基于非牛顿指数渗流和分数阶Merchant模型的一维流变固结分析. 岩土力学, 40(6): 2029-2038. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201906002.htm
|
卢慈荣, 曹奕, 蒋军, 等, 2017. 粘弹性软土中盾构隧道的长期沉降. 低温建筑技术, 39(5): 64-67. https://www.cnki.com.cn/Article/CJFDTOTAL-DRAW201705019.htm
|
骆祖江, 王鑫, 代敬, 等, 2023. 地面沉降对地下水可采资源影响研究. 地球科学, 在线发表.
|
宋新江, 钱财富, 2010. 渗流作用下黏性土水力梯度分析. 南水北调与水利科技, 8(5): 65-67. https://www.cnki.com.cn/Article/CJFDTOTAL-NSBD201005018.htm
|
王素, 李传勋, 金丹丹, 2018. 考虑非达西渗流的单层非均质地基固结分析. 应用力学学报, 35(2): 285-291, 449. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201802011.htm
|
王盛源, 1981. 变荷载下的粘弹性体一维固结问题. 水利水运科学研究, (2): 10-17. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY198102001.htm
|
谢海澜, 武强, 赵增敏, 等, 2007. 考虑非达西流的弱透水层固结计算. 岩土力学, 28(5): 1061-1065. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200705041.htm
|
谢康和, 1994. 双层地基一维固结理论与应用. 岩土工程学报, 16(5): 24-35. https://cdmd.cnki.com.cn/Article/CDMD-10286-2005033687.htm
|
徐海洋, 周志芳, 高宗旗, 2011. 释水条件下地面沉降的滞后效应试验研究. 岩石力学与工程学报, 30(S2): 3595-3601. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S2031.htm
|
徐进, 杨伟涛, 陈征, 等, 2021. 水位下降诱发含水层‒弱透水层1维黏弹性固结分析. 工程科学与技术, 53(5): 89-97. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202105010.htm
|
杨伟涛, 徐进, 王少伟, 2020. 弱透水性饱和黏土流变模型试验研究. 烟台大学学报(自然科学与工程版), 33(2): 225-231. https://www.cnki.com.cn/Article/CJFDTOTAL-YTSZ202002015.htm
|