• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 9
    Sep.  2023
    Turn off MathJax
    Article Contents
    Zhao Yuechun, Wang Quanrong, 2023. Water Release and Consolidation Model of Aquitard Considering Moving Non-Darcy Flow Interface. Earth Science, 48(9): 3494-3503. doi: 10.3799/dqkx.2023.046
    Citation: Zhao Yuechun, Wang Quanrong, 2023. Water Release and Consolidation Model of Aquitard Considering Moving Non-Darcy Flow Interface. Earth Science, 48(9): 3494-3503. doi: 10.3799/dqkx.2023.046

    Water Release and Consolidation Model of Aquitard Considering Moving Non-Darcy Flow Interface

    doi: 10.3799/dqkx.2023.046
    • Received Date: 2022-12-22
      Available Online: 2023-10-07
    • Publish Date: 2023-09-25
    • The slow seepage velocity in the aquitard is not conducive to monitoring its water release process, so the consolidation model is often used to comprehensively evaluate the evolution process of land subsidence. However, the traditional consolidation model assumes that the seepage law in the aquitard meets Darcy's law, which may be inconsistent with the actual situation. Therefore, a consolidation model considering the interface of moving non-Darcy flow region is established in this study, and the numerical solution of the model is established by using the finite difference method, in which the permeability coefficient and void ratio are assumed to be functions of stress. Compared with the existing models and indoor experimental data, the reliability of this research model is verified. The results show that the new model can more accurately simulate the consolidation process of aquitard induced by the instantaneous drawdown of water level. The consolidation model considering the moving non-Darcy flow interface delays the dissipation process of excess pore water pressure, but does not affect the total dissipation and total settlement of pore water pressure. For the consolidation model considering the attenuation of permeability coefficient, the time for the dissipation of pore water pressure and the settlement to reach the stability is obviously prolonged, and the variable permeability coefficient delays the time for the moving interface to reach the stability, causing the stable position of the moving interface to move upward.

       

    • loading
    • Burland, J. B., 1990. On the Compressibility and Shear Strength of Natural Clays. Géotechnique, 40(3): 329-378. https://doi.org/10.1680/geot.1990.40.3.329
      Hansbo, S., 1960. Consolidation of Clay with Special Reference to Influence of Vertical Sand Drains. Swedish Geotechnical Institute Proceeding, 18: 45-50.
      Jin, B. J., Yin, K. L., Gui, L., et al., 2023. Transmission Line Pole Tower Land in Salt Lake Area Based on Remote Sensing Interpretation. Earth Science, Online (in Chinese with English abstract). https://kns.cnki.net/kcms/detail/42.1874.p.20220413.1713.004.html
      Lambe, T. W., Whitman, R. W., 1969. Soil Mechanics. John Wiley and Sons, New York, 553-554.
      Li, C. X., Ma, H. T., Jin, D. D., 2019. Analytical Solution for Rheological Consolidation of Soft Clay with Threshold Hydraulic Gradient. Advanced Engineering Sciences, 51(2): 53-60 (in Chinese with English abstract).
      Li, C. X., Wang, C. J., Wang, S., et al., 2017. Analysis on Nonlinear Consolidation of Structural Soft Soil by Considering Non-Darcian Flow. Journal of Jiangsu University (Natural Science Edition), 38(4): 472-478 (in Chinese with English abstract).
      Li, C. X., Xie, K. H., Hu, A. F., et al., 2012. Analysis of One-Dimensional Non-Linear Consolidation with Exponential Flow. Journal of Central South University (Science and Technology), 43(7): 2789-2795 (in Chinese with English abstract).
      Li, J., Xia, X. H., Li, M. G., et al., 2020. Nonlinear Drainage Model of Viscoelastic Aquitards Considering Non-Darcian Flow. Journal of Hydrology, 587: 124988. https://doi.org/10.1016/j.jhydrol.2020.124988
      Li, Z. D., Shao, Y., 2017. Consolidation Characteristics of Soft Clay Ground Subject to Non-Uniformly Distributed Initial Pore Pressure. Journal of Chongqing Jiaotong University (Natural Science), 36(10): 45-50 (in Chinese with English abstract).
      Liu, J. C., Lei, G. G., Mei, G. X., 2012. One-Dimensional Consolidation of Visco-Elastic Aquitard Due to Withdrawal of Deep-Groundwater. Journal of Central South University, 19(1): 282-286. https://doi.org/10.1007/s11771-012-1002-9
      Liu, Z. Y., Cui, P. L., Zheng, Z. L., et al., 2019. Analysis of One-Dimensional Rheological Consolidation with Flow Described by Non-Newtonian Index and Fractional-Order Merchant's Model. Rock and Soil Mechanics, 40(6): 2029-2038 (in Chinese with English abstract).
      Lo, K. Y., 1961. Secondary Compression of Clays. Journal of the Soil Mechanics and Foundations Division, 87(4): 61-88. https://doi.org/10.1061/jsfeaq.0000365
      Lu, C. R., Cao, Y., Jiang, J., et al., 2017. Long-Term Surface Settlement of Shield Tunnel in Visco-Elastic Soft Soil. Low Temperature Architecture Technology, 39(5): 64-67 (in Chinese with English abstract).
      Luo, Z. J., Wang, X., Dai, J., et al., 2023. Research on the Influence of Land Subsidence on the Minable Groundwater Resources. Earth Science, Online (in Chinese with English abstract). https://kns.cnki.net/kcms/detail/42.1874.p.20220505.1823.006.html
      Song, X. J., Qian, C. F., 2010. Analysis of Hydraulic Gradient of Cohesive Soil in Water Seepage. South-to-North Water Transfers and Water Science & Technology, 8(5): 65-67 (in Chinese with English abstract).
      Sridharan, A., Prakash, K., 2001. Consolidation and Permeability Behavior of Segregated and Homogeneous Sediments. Geotechnical Testing Journal, 24(1): 109-120. https://doi.org/10.1520/gtj11287j
      Tavenas, F., Jean, P., Leblond, P., et al., 1983. The Permeability of Natural Soft Clays. Part Ⅱ: Permeability Characteristics. Canadian Geotechnical Journal, 20(4): 645-660. https://doi.org/10.1139/t83-073
      Taylor, D. W., Merchant, W., 1940. A Theory of Clay Consolidation Accounting for Secondary Compression. Journal of Mathematics and Physics, 19(1-4): 167-185. https://doi.org/10.1002/sapm1940191167
      Terzaghi, K., 1924. Die Theorie der Hydrodynamischen Spannungerscheinungen und Ihr Erdbautechnisches Anwendungsgebiet. Proceedings of the first International Congress for Applied Mechanics, Delft.
      Wang, S., Li, C. X., Jin, D. D., 2018. Analysis on the Consolidation of Non-Homogeneous Soil with Non-Darcian Flow Law. Chinese Journal of Applied Mechanics, 35(2): 285-291, 449 (in Chinese with English abstract).
      Wang, S. Y., 1981. One Dimensional Consolidation of Viscoelastic Material under Variable Load. Hydro-Science and Engineering, (2): 10-17 (in Chinese with English abstract).
      Xie, H. L., Wu, Q., Zhao, Z. M., et al., 2007. Consolidation Computation of Aquitard Considering Non-Darcy Flow. Rock and Soil Mechanics, 28(5): 1061-1065 (in Chinese with English abstract).
      Xie, K. H., 1994. Theory of one Dimensional Consolidation of Double-Layered Ground and Its Applications. Chinese Journal of Geotechnical Engineering, 16(5): 24-35 (in Chinese with English abstract).
      Xu, H. Y., Zhou, Z. F., Gao, Z. Q., 2011. Experimental Research of Hysteresis Effect of Land Subsidence Caused by Water Releasing. Chinese Journal of Rock Mechanics and Engineering, 30(S2): 3595-3601 (in Chinese with English abstract).
      Xu, J., Yang, W. T., Chen, Z., et al., 2021. One-Dimensional Viscoelastic Consolidation Analysis of Aquifer-Aquitard Due to Drawdown of Water Level. Advanced Engineering Sciences, 53(5): 89-97 (in Chinese with English abstract).
      Yang, W. T., Xu, J., Wang, S. W., 2020. Experimental Study on Rheological Models of Saturated Clay with Weak Permeability. Journal of Yantai University (Natural Science and Engineering Edition), 33(2): 225-231 (in Chinese with English abstract).
      金必晶, 殷坤龙, 桂蕾, 等, 2023. 基于遥感解译的盐湖地区输电线路杆塔地面沉降易发性评价. 地球科学, 在线发表. https://kns.cnki.net/kcms/detail/42.1874.p.20220413.1713.004.html
      李传勋, 马浩天, 金丹丹, 2019. 考虑起始水力坡降的软黏土流变固结解析解. 工程科学与技术, 51(2): 53-60. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201902007.htm
      李传勋, 王昌建, 王素, 等, 2017. 考虑非达西渗流的结构性软土非线性固结分析. 江苏大学学报(自然科学版), 38(4): 472-478. https://www.cnki.com.cn/Article/CJFDTOTAL-JSLG201704017.htm
      李传勋, 谢康和, 胡安峰, 等, 2012. 基于指数形式渗流下的软土一维非线性固结分析. 中南大学学报(自然科学版), 43(7): 2789-2795. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201207048.htm
      李之达, 邵玉, 2017. 基于初始孔压非均布条件的软黏土地基固结特性分析. 重庆交通大学学报(自然科学版), 36(10): 45-50. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201710008.htm
      刘忠玉, 崔鹏陆, 郑占垒, 等, 2019. 基于非牛顿指数渗流和分数阶Merchant模型的一维流变固结分析. 岩土力学, 40(6): 2029-2038. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201906002.htm
      卢慈荣, 曹奕, 蒋军, 等, 2017. 粘弹性软土中盾构隧道的长期沉降. 低温建筑技术, 39(5): 64-67. https://www.cnki.com.cn/Article/CJFDTOTAL-DRAW201705019.htm
      骆祖江, 王鑫, 代敬, 等, 2023. 地面沉降对地下水可采资源影响研究. 地球科学, 在线发表. https://kns.cnki.net/kcms/detail/42.1874.p.20220505.1823.006.html
      宋新江, 钱财富, 2010. 渗流作用下黏性土水力梯度分析. 南水北调与水利科技, 8(5): 65-67. https://www.cnki.com.cn/Article/CJFDTOTAL-NSBD201005018.htm
      王素, 李传勋, 金丹丹, 2018. 考虑非达西渗流的单层非均质地基固结分析. 应用力学学报, 35(2): 285-291, 449. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201802011.htm
      王盛源, 1981. 变荷载下的粘弹性体一维固结问题. 水利水运科学研究, (2): 10-17. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY198102001.htm
      谢海澜, 武强, 赵增敏, 等, 2007. 考虑非达西流的弱透水层固结计算. 岩土力学, 28(5): 1061-1065. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200705041.htm
      谢康和, 1994. 双层地基一维固结理论与应用. 岩土工程学报, 16(5): 24-35. https://cdmd.cnki.com.cn/Article/CDMD-10286-2005033687.htm
      徐海洋, 周志芳, 高宗旗, 2011. 释水条件下地面沉降的滞后效应试验研究. 岩石力学与工程学报, 30(S2): 3595-3601. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S2031.htm
      徐进, 杨伟涛, 陈征, 等, 2021. 水位下降诱发含水层‒弱透水层1维黏弹性固结分析. 工程科学与技术, 53(5): 89-97. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202105010.htm
      杨伟涛, 徐进, 王少伟, 2020. 弱透水性饱和黏土流变模型试验研究. 烟台大学学报(自然科学与工程版), 33(2): 225-231. https://www.cnki.com.cn/Article/CJFDTOTAL-YTSZ202002015.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)  / Tables(3)

      Article views (527) PDF downloads(36) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return