Citation: | Zhang Weifeng, Deng Xin, Zhang Liguo, Wang Jing, Xie Guogang, Jin Xinbiao, 2024. Early Permian Post-Collisional Extension and Crust-Mantle Magmatism in the Central Tianshan Block, Eastern Tianshan: Constraints from the Study of Porphyritic Monzodiorite. Earth Science, 49(8): 2697-2713. doi: 10.3799/dqkx.2023.064 |
Bailey, J. C., 1981. Geochemical Criteria for a Refined Tectonic Discrimination of Orogenic Andesites. Chemical Geology, 32(1/2/3/4): 139-154. https://doi.org/10.1016/0009-2541(81)90135-2
|
Bedard, J. H., 1999. Petrogenesis of Boninites from the Betts Cove Ophiolite, Newfoundland, Canada: Identification of Subducted Source Components. Journal of Petrology, 40(12): 1853-1889. https://doi.org/10.1093/petroj/40. 12.1853 doi: 10.1093/petroj/40.12.1853
|
Belousova, E., Griffin, W., O'Reilly, S. Y., et al., 2002. Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 143(5): 602-622. https://doi.org/10.1007/s00410-002-0364-7
|
Blevin, P. L., 2004. Redox and Compositional Parameters for Interpreting the Granitoid Metallogeny of Eastern Australia: Implications for Gold‐Rich Ore Systems. Resource Geology, 54(3): 241-252. https://doi.org/10.1111/j.1751-3928.2004.tb00205.x
|
Cao, M. J., Qin, K. Z., Li, G. M., et al., 2018. Oxidation State Inherited from the Magma Source and Implications for Mineralization: Late Jurassic to Early Cretaceous Granitoids, Central Lhasa Subterrane, Tibet. Mineralium Deposita, 53(3): 299-309. https://doi.org/10.1007/s00126-017-0739-3
|
Chai, F. M., Zhang, Z. C., Mao, J. W., et al., 2008. Geology, Petrology and Geochemistry of the Baishiquan Ni-Cu-Bearing Mafic-Ultramafic Intrusions in Xinjiang, NW China: Implications for Tectonics and Genesis of Ores. Journal of Asian Earth Sciences, 32(2/3/4): 218-235. https://doi.org/10.1016/j.jseaes.2007.10.014
|
Chen, Y. J., Pirajno, F., Wu, G., et al., 2012. Epithermal Deposits in North Xinjiang, NW China. International Journal of Earth Sciences, 101(4): 889-917. https://doi.org/10.1007/s00531-011-0689-4
|
Davies, J., von Blanckenburg, F., 1995. Slab Breakoff: A Model of Lithosphere Detachment and its Test in the Magmatism and Deformation of Collisional Orogens. Earth and Planetary Science Letters, 129(1/2/3/4): 85-102. https://doi.org/10.1016/0012-821x(94)00237-s
|
Du, L., Long, X. P., Yuan, C., et al., 2018a. Petrogenesis of Late Paleozoic Diorites and A-Type Granites in the Central Eastern Tianshan, NW China: Response to Post-Collisional Extension Triggered by Slab Breakoff. Lithos, 318-319(3): 47-59. https://doi.org/10.1016/j.lithos. 2018. 08.006 doi: 10.1016/j.lithos.2018.08.006
|
Du, L., Long, X. P., Yuan, C., et al., 2018b. Mantle Contribution and Tectonic Transition in the Aqishan-Yamansu Belt, Eastern Tianshan, NW China: Insights from Geochronology and Geochemistry of Early Carboniferous to Early Permian Felsic Intrusions. Lithos, 304-307(2): 230-244. https://doi.org/10.1016/j.lithos.2018.02.010
|
Eby, G. N., 1992. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20(7): 641. https://doi.org/10.1130/0091-7613(1992)020<0641:csotat>2.3.co;2 doi: 10.1130/0091-7613(1992)020<0641:csotat>2.3.co;2
|
Ferrari, L., 2004. Slab Detachment Control on Mafic Volcanic Pulse and Mantle Heterogeneity in Central Mexico. Geology, 32(1): 77. https://doi.org/10.1130/g19887.1
|
Finch, R. J., Hanchar, J. M., 2001. Structure and Chemistry of Zircon and Zircon-Group Minerals. Reviews in Mineralogy and Geochemistry, 53(1): 1-25. https://doi.org/10.2113/0530001
|
Frost, D. J., McCammon, C. A., 2008. The Redox State of Earth's Mantle. Annual Review of Earth and Planetary Sciences, 36(1): 389-420. https://doi.org/10.1146/annurev.earth.36.031207.124322
|
Han, C. M., Xiao, W. J., Zhao, G. C., et al., 2011. In-Situ U-Pb, Hf and Re-Os Isotopic Analyses of the Xiangshan Ni-Cu-Co Deposit in Eastern Tianshan (Xinjiang), Central Asia Orogenic Belt: Constraints on the Timing and Genesis of the Mineralization. Lithos, 120(3/4): 547-562. https://doi.org/10.1016/j.lithos.2010.09.019
|
Han, Y. G., Zhao, G. C., 2018. Final Amalgamation of the Tianshan and Junggar Orogenic Collage in the Southwestern Central Asian Orogenic Belt: Constraints on the Closure of the Paleo-Asian Ocean. Earth-Science Reviews, 186: 129-152. https://doi.org/10.1016/j.earscirev. 2017. 09.012 doi: 10.1016/j.earscirev.2017.09.012
|
Hawkesworth, C. J., Turner, S. P., McDermott, F., et al., 1997. U-Th Isotopes in Arc Magmas: Implications for Element Transfer from the Subducted Crust. Science, 276(5312): 551-555. https://doi.org/10.1126/science. 276. 5312.551 doi: 10.1126/science.276.5312.551
|
He, Z. Y., Zhang, Z. M., Zong, K. Q., et al., 2014. Zircon U-Pb and Hf Isotopic Studies of the Xingxingxia Complex from Eastern Tianshan (NW China): Significance to the Reconstruction and Tectonics of the Southern Central Asian Orogenic Belt. Lithos, 190-191: 485-499. https://doi.org/10.1016/j.lithos.2013.12.023
|
Hildebrand, R. S., Whalen, J. B., Bowring, S. A., 2018. Resolving the Crustal Composition Paradox by 3.8 Billion Years of Slab Failure Magmatism and Collisional Recycling of Continental Crust. Tectonophysics, 734-735(11): 69-88. https://doi.org/10.1016/j.tecto.2018.04.001
|
Hoffman, A. W., 1997. Mantle Geochemistry: The Message from Oceanic Volcanism. Nature, 385(6613): 219-229. https://doi.org/10.1038/385219a0
|
Jiang, H. J., Han, J. S., Chen, H. Y., et al., 2017. Intra-Continental Back-Arc Basin Inversion and Late Carboniferous Magmatism in Eastern Tianshan, NW China: Constraints from the Shaquanzi Magmatic Suite. Geoscience Frontiers, 8(6): 1447-1467. https://doi.org/10.1016/j.gsf.2017.01.008
|
Jiang, H. J., Chen, H. Y., Gong, L., et al., 2021. Geochronology and Geochemistry of a Newly Identified Permian Hornblende Gabbro Suite in Aqishan-Yamansu Belt, Eastern Tianshan, NW China: Implications on Petrogenesis and Tectonic Setting. Geological Journal, 56(11): 5506-5530. https://doi.org/10.1002/gj.4254
|
Jull, M., Kelemen, P. B., 2001. On the Conditions for Lower Crustal Convective Instability. Journal of Geophysical Research: Solid Earth, 106(B4): 6423-6446. https://doi.org/10.1029/2000jb900357
|
Kay, R. W., Kay, S. M., 1993. Delamination and Delamination Magmatism. Tectonophysics, 219(1/2/3): 177-189. https://doi.org/10.1016/0040-1951(93)90295-u
|
Keppler, H., 1996. Constraints from Partitioning Experiments on the Composition of Subduction-Zone Fluids. Nature, 380(6571): 237-240. https://doi.org/10.1038/380237a0
|
Li, D. F., Zhang, L., Chen, H. Y., et al., 2016. Geochronology and Geochemistry of the High Mg Dioritic Dikes in Eastern Tianshan, NW China: Geochemical Features, Petrogenesis and Tectonic Implications. Journal of Asian Earth Sciences, 115: 442-454. https://doi.org/10.1016/j.jseaes.2015.10.018
|
Li, W. Q., Ma, H. D., Wang, R., et al., 2008. SHRIMP Dating and Nd-Sr Isotopic Tracing of Kangguertage Ophiolite in Eastern Tianshan, Xinjiang. Acta Petrologica Sinica, 24(4): 773-780 (in Chinese with English abstract).
|
Li, X. M., Yu, J. Y., Wang, G. Q., et al., 2012. Geochronology of Jijitaizi Ophiolite in Beishan Area, Gansu Province, and Its Geological Significance. Geological Bulletin of China, 31(12): 2025-2031 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2012.12.011
|
Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
|
Lu, W. J., Chen, H. Y., Zhang, L., et al., 2017. Age and Geochemistry of the Intrusive Rocks from the Shaquanzi-Hongyuan Pb-Zn Mineral District: Implications for the Late Carboniferous Tectonic Setting and Pb-Zn Mineralization in the Eastern Tianshan, NW China. Lithos, 294-295: 97-111(in Chinese with English abstract). doi: 10.1016/j.lithos.2017.10.009
|
Ludwig, K. R., 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley, California. BGC Special Publication, Berkeley.
|
Lugmair, G. W., Marti, K., 1978. Lunar Initial 143Nd/144Nd: Differential Evolution of the Lunar Crust and Mantle. Earth and Planetary Science Letters, 39(3): 349-357. https://doi.org/10.1016/0012-821x(78)90021-3
|
Luo, T., Liao, Q. A., Zhang, X. H., et al., 2016. Geochronology and Geochemistry of Carboniferous Metabasalts in Eastern Tianshan, Central Asia: Evidence of a Back-Arc Basin. International Geology Review, 58(6): 756-772. https://doi.org/10.1080/00206814.2015.1114433
|
MacDonald, A. W., Cohen, J. D., Stenger, V. A., et al., 2000. Dissociating the Role of the Dorsolateral Prefrontal and Anterior Cingulate Cortex in Cognitive Control. Science, 288(5472): 1835-1838. https://doi.org/10.1126/science. 288.5472.1835 doi: 10.1126/science.288.5472.1835
|
Madina, N., Nijat, A., Muhtar, Z., et al., 2017. Geological Charactersitic and Tectonic Significance of Middle Acidic Rocks from The Kawabulak Complex Central Tianshan, China. China Academic Journal Electronic Publishing House, (10): 107-109(in Chinese with English abstract).
|
Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2
|
Mao, J. W., Goldfarb, R. J., Wang, Y. T., et al., 2005. Late Paleozoic Base and Precious Metal Deposits, East Tianshan, Xinjiang, China: Characteristics and Geodynamic Setting. Episodes, 28(1): 23-36. https://doi.org/10.18814/epiiugs/2005/v28i1/003
|
Mao, Q. G., Ao, S. J., Windley, B. F., et al., 2021. Petrogenesis of Late Carboniferous-Early Permian Mafic-Ultramafic-Felsic Complexes in the Eastern Central Tianshan, NW China: The Result of Subduction-Related Transtension? Gondwana Research, 95: 72-87. doi: 10.1016/j.gr.2021.03.007
|
Mao, Q. G., Xiao, W. J., Han, C. M., et al., 2010. The Study of Early-Paleozoic Prealuminous Granite (SP) and Its Tectonic Significance in the Xingxingxia Suture Zone, Eastern Tianshan Mountains, Xinjiang, Northwest China. Chinese Journal of Geology, 45(1): 41-56 (in Chinese with English abstract).
|
McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3/4): 223-253. https://doi.org/10.1016/0009-2541(94)00140-4
|
Myers, J., Eugster, H. P., 1983. The System Fe-Si-O: Oxygen Buffer Calibrations to 1, 500K. Contributions to Mineralogy and Petrology, 82(1): 75-90. https://doi.org/10.1007/bf00371177
|
Pearce, J. A., 2008. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 100(1/2/3/4): 14-48. https://doi.org/10.1016/j.lithos.2007.06.016
|
Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/bf00384745
|
Pirajno, F., 2010. Intracontinental Strike-Slip Faults, Associated Magmatism, Mineral Systems and Mantle Dynamics: Examples from NW China and Altay-Sayan (Siberia). Journal of Geodynamics, 50(3/4): 325-346. https://doi.org/10.1016/j.jog.2010.01.018
|
Qiu, J. T, Yu, X. Q., Santosh, M., et al., 2013. Geochronology and Magmatic Oxygen Fugacity of the Tongcun Molybdenum Deposit, Northwest Zhejiang, SE China. Mineralium Deposita, 48(5): 545-556. doi: 10.1007/s00126-013-0456-5
|
Rudnick, R. L., Gao, S., Holland, H. D., et al., 2003. Composition of the Continental Crust. The Crust, 3: 1-64.
|
Sahoo, S., Rao, N. V. C., Monié, P., et al., 2020. Petro-Geochemistry, Sr Nd Isotopes and 40Ar/39Ar Ages of Fractionated Alkaline Lamprophyres from the Mount Girnar Igneous Complex (NW India): Insights into the Timing of Magmatism and the Lithospheric Mantle beneath the Deccan Large Igneous Province. Lithos, 374-375(1981): 105712. https://doi.org/10.1016/j.lithos. 2020. 105712 doi: 10.1016/j.lithos.2020.105712
|
Seghedi, I., Downes, H., Pecskay, Z., et al., 2001. Magmagenesis in a Subduction-Related Post-Collisional Volcanic Arc Segment: the Ukrainian Carpathians. Lithos, 57(4): 237-262. doi: 10.1016/S0024-4937(01)00042-1
|
Sengör, A. M. C., Natal'in, B. A., Burtman, V. S., 1993a. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 364(6435): 299-307. https://doi.org/10.1038/364299a0
|
Sengör, A. M. C., Natal'in, B. A., Burtman, V. S., 1993b. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 364(6435): 299-307. https://doi.org/10.1038/364299a0
|
Sengör, A. M. C., Natal'in, B. A., 1996. Paleotectonics of Asia: fragments of synthesis. In: Yin, A., Harrison, T. M., eds., The Tectonic Evolution of Asia. Cambridge University Press, Cambridge, Special Publication, 486-640.
|
Shu, L. S., Charvet, J., Lu, H. F., et al., 2002. Paleozoic Accretion-Collision Events and Kinematics of Ductile Deformation in the Eastern Part of the Southern‐Central Tianshan Belt, China. Acta Geologica Sinica-English Edition, 76(3): 308-323. https://doi.org/10.1111/j.1755-6724.2002.tb00547.x
|
Shu, Q. H., Chang, Z. S., Lai, Y., et al., 2019. Zircon Trace Elements and Magma Fertility: Insights from Porphyry (-Skarn) Mo Deposits in NE China. Mineralium Deposita, 54(5): 645-656. https://doi.org/10.1007/s00126-019-00867-7
|
Song, X. Y., Xie, W., Deng, Y. F., et al., 2011. Slab Break-Off and the Formation of Permian Mafic-ultramafic Intrusions in Southern Margin of Central Asian Orogenic Belt, Xinjiang, NW China. Lithos, 127(1/2): 128-143. https://doi.org/10.1016/j.lithos.2011.08.011
|
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
|
Tang, D. M., Qin, K. Z., Li, C. S., et al., 2011. Zircon Dating, Hf-Sr-Nd-Os Isotopes and PGE Geochemistry of the Tianyu Sulfide-Bearing Mafic-ultramafic Intrusion in the Central Asian Orogenic Belt, NW China. Lithos, 126(1/2): 84-98. https://doi.org/10.1016/j.lithos.2011.06.007
|
Tang, D. M., Qin, K. Z., Sun, H., et al., 2009. Lithological, Chronological and Geochemical Characteristics of Tianyu Cu-Ni Deposit: Constraints on Sources and Genesis of Mafic-Ultramafic Intrusions in Eastern Xinjiang. Acta Petrologica Sinica, 24(4): 817-831 (in Chinese with English abstract).
|
Trail, D., Watson, E. B., Tailby, N. D., 2012. Ce and Eu Anomalies in Zircon as Proxies for the Oxidation State of Magmas. Geochimica et Cosmochimica Acta, 97(Suppl. 4): 70-87. https://doi.org/10.1016/j.gca.2012.08.032
|
Wang, G. Q., Li, X. M., Xu, X. Y., et al., 2014. Ziron U-Pb Chronological Study of the Hongshishan Ophiolite in the Beishan Area and Their Tectonic Significance. Acta Petrologica Sinica, 30(6): 1685-1694 (in Chinese with English abstract).
|
Wang, Y., Sun, G., Li, J., 2010. U-Pb (SHRIMP) and 40Ar/39Ar Geochronological Constraints on the Evolution of the Xingxingxia Shear Zone, NW China: A Triassic Segment of the Altyn Tagh Fault System. Geological Society of America Bulletin, 122(3/4): 487-505. https://doi.org/10.1130/b26347.1
|
Watson, E. B., Wark, D. A., Thomas, J. B., 2006. Crystallization Thermometers for Zircon and Rutile. Contributions to Mineralogy and Petrology, 151(4): 413-433. https://doi.org/10.1007/s00410-006-0068-5
|
Wen, D. J., He, Z. Y., Zhang, Z. M., 2018. Geochemistry and Tectonic Implications of Early Permian Granitic Rocks in the Xingxingxia Area of Chinese Central Tianshan Arc Terrane. Geological Journal, 54(3): 1578-1590. https://doi.org/10.1002/gj.3252
|
Wen, D. J., 2019. Petrogenesis and Tectonic Implications of the Late Paleozoic Granites from the Xingxingxia Area of The Central Tianshan(Dissertation). Chinese Academy of Geological Sciences, Beijing, 1-90 (in Chinese with English abstract).
|
Wilson, B. M., 2007. Igneous Petrogenesis a Global Tectonic Approach. Springer Science & Business Media.
|
Wones, D. R., 1989. Significance of the Assemblage Titanite+Magnetite+Quartz in Granitic Rocks. American Mineralogist, 74(7-8): 744-749.
|
Wood, B. J., Bryndzia, L. T., Johnson, K. E., 1990. Mantle Oxidation State and its Relationship to Tectonic Environment and Fluid Speciation. Science, 248(4953): 337-345. https://doi.org/10.1126/science.248.4953.337
|
Woodhead, J. D., Hergt, J. M., Davidson, J. P., et al., 2001. Hafnium Isotope Evidence for 'Conservative' Element Mobility during Subduction Zone Processes. Earth and Planetary Science Letters, 192(3): 331-346. https://doi.org/10.1016/s0012-821x(01)00453-8
|
Xiao, W. J., Han, C. M., Yuan, C., et al., 2008. Middle Cambrian to Permian Subduction-Related Accretionary Orogenesis of Northern Xinjiang, NW China: Implications for the Tectonic Evolution of Central Asia. Journal of Asian Earth Sciences, 32(2/3/4): 102-117. https://doi.org/10.1016/j.jseaes.2007.10.008
|
Xiao, W. J., Windley, B. F., Allen, M. B., et al., 2013. Paleozoic Multiple Accretionary and Collisional Tectonics of the Chinese Tianshan Orogenic Collage. Gondwana Research, 23(4): 1316-1341. https://doi.org/10.1016/j.gr.2012.01.012
|
Xiao, W. J., Windley, B. F., Yuan, C., et al., 2009. Paleozoic Multiple Subduction-Accretion Processes of the Southern Altaids. American Journal of Science, 309(3): 221-270. https://doi.org/10.2475/03.2009.02
|
Xu, X. Y., Xia, L. Q., Ma, Z. P., et al., 2006. SHRIMP Zircon U-Pb Geochronology of the Plagiogranites from Bayingou Ophiolite in North Tianshan Mountains and the Petrogenesis of the Ophiolite. Acta Petrologica Sinica, 22(1): 83-94 (in Chinese with English abstract).
|
Yang, D. L., 2020. Petrogenesis of Late Paleozoic Granites from Alatag Region of the Central Tianshan, and Their Geological Significance(Dissertation). China University of Geosciences, Beijing, 1-71 (in Chinese with English abstract).
|
Yang, W. B., Niu, H. C., Shan, Q., et al., 2014. Geochemistry of Magmatic and Hydrothermal Zircon from the Highly Evolved Baerzhe Alkaline Granite: Implications for Zr-REE-Nb Mineralization. Mineralium Deposita, 49(4): 451-470. https://doi.org/10.1007/s00126-013-0504-1
|
Zhang, C. L., Zou, H. B., 2013. Permian A-Type Granites in Tarim and Western Part of Central Asian Orogenic Belt (CAOB): Genetically Related to a Common Permian Mantle Plume? Lithos, 172-173(B1): 47-60. https://doi.org/10.1016/j.lithos.2013.04.001
|
Zhang, S. L., Chen, H. Y., Hollings, P., et al., 2020. Tectonic and Magmatic Evolution of the Aqishan-Yamansu Belt: A Paleozoic Arc-Related Basin in the Eastern Tianshan (NW China). GSA Bulletin, 133(5/6): 1320-1344. https://doi.org/10.1130/b35749.1
|
Zhang, W. F., Deng, X., Tu, B., et al., 2021. Petrogenesis of the Cretaceous Intraplate Mafic Intrusions in the Eastern Tianshan Orogen, NW China. Frontiers in Earth Science, 9: 665610. https://doi.org/10.3389/feart.2021.665610
|
Zhang, X. R., Zhao, G. C., Eizenhöfer, P. R., et al., 2015. Latest Carboniferous Closure of the Junggar Ocean Constrained by Geochemical and Zircon U-Pb-Hf Isotopic Data of Granitic Gneisses from the Central Tianshan Block, NW China. Lithos, 238: 26-36. https://doi.org/10.1016/j.lithos.2015.09.012
|
Zhang, X. R., Zhao, G. C., Eizenhöfer, P. R., et al., 2016. Tectonic Transition from Late Carboniferous Subduction to Early Permian Post-Collisional Extension in the Eastern Tianshan, NW China: Insights from Geochronology and Geochemistry of Mafic-Intermediate Intrusions. Lithos, 256-257: 269-281. https://doi.org/10.1016/j.lithos.2016.04.006
|
Zhao, L. D., Chen, H. Y., Hollings, P., et al., 2019. Tectonic Transition in the Aqishan-Yamansu Belt, Eastern Tianshan: Constraints from the Geochronology and Geochemistry of Carboniferous and Triassic Igneous Rocks. Lithos, 344-345: 247-264. https://doi.org/10.1016/j.lithos.2019.06.023
|
Zheng, J. H., 2020. A Synthesis of Iron Deposits in the Eastern Tianshan, NW China. Geoscience Frontiers, 11(4): 1271-1287. https://doi.org/10.1016/j.gsf.2019.11.014
|
Zheng, J. H., Mao, J. W., Chai, F. M., et al., 2016. Petrogenesis of Permian A-Type Granitoids in the Cihai Iron Ore District, Eastern Tianshan, NW China: Constraints on the Timing of Iron Mineralization and Implications for a Non-Plume Tectonic Setting. Lithos, 260(2): 371-383. https://doi.org/10.1016/j.lithos.2016.05.012
|
Zheng, J. H., Mao, J. W., Yang, F. Q., et al., 2015. The Post-Collisional Cihai Iron Skarn Deposit, Eastern Tianshan, Xinjiang, China. Ore Geology Reviews, 67(3): 244-254. https://doi.org/10.1016/j.oregeorev.2014.12.006
|
Zhong, S. H., Li, S. Z., Seltmann, R., et al., 2021. The Influence of Fractionation of REE-Enriched Minerals on the Zircon Partition Coefficients. Geoscience Frontiers, 12(3): 101094. https://doi.org/10.1016/j.gsf.2020.10.002
|
李文铅, 马华东, 王冉, 等, 2008. 东天山康古尔塔格蛇绿岩SHRIMP年龄、Nd‒Sr同位素特征及构造意义. 岩石学报, 24 (4): 773-780. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200804017.htm
|
李向民, 余吉远, 王国强, 等, 2012. 甘肃北山地区芨芨台子蛇绿岩LA-ICP-MS锆石U-Pb测年及其地质意义. 地质通报, 31(12): 2025-2031. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201212011.htm
|
麦地娜·努尔太, 尼加提·阿布都逊, 木合塔尔·扎日, 等, 2017. 中天山卡瓦布拉克杂岩带中酸性岩的地质特征及其构造意义. 世界有色金属, (10): 107-109. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201620042.htm
|
毛启贵, 肖文交, 韩春明, 等, 2010. 东天山星星峡缝合带早古生代强过铝质花岗岩的研究及其地质意义. 地质科学, 45 (1): 41-56. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201001006.htm
|
唐冬梅, 秦克章, 孙赫, 等, 2009. 天宇铜镍矿床的岩相学、锆石U-Pb年代学、地球化学特征: 对东疆镁铁-超镁铁质岩体源区和成因的制约. 岩石学报, (4): 817-831. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200904008.htm
|
王国强, 李向民, 徐学义, 等, 2014. 甘肃北山红石山蛇绿岩锆石U-Pb年代学研究及构造意义. 岩石学报, 30(6): 1685-1694. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201406011.htm
|
温定军, 2019. 中天山星星峡地区晚古生代花岗岩的成因和构造意义(博士毕业论文). 北京: 中国地质科学院, 1-90.
|
徐学义, 夏林圻, 马中平, 等, 2006. 北天山巴音沟蛇绿岩斜长花岗岩SHRIMP锆石U-Pb年龄及蛇绿岩成因研究. 岩石学报, 22(1): 83-94. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200601009.htm
|
杨德乐, 2020. 中天山阿拉塔格晚古生代花岗岩的岩石成因及地质意义(博士毕业论文). 北京: 中国地质大学, 1-71.
|
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |