• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 8
    Aug.  2024
    Turn off MathJax
    Article Contents
    Dou Ping, Xiao Yuanyuan, Lin Jinyan, Yao Yongxiang, 2024. Fluid-Rock Interaction in Subduction Zones: Mineralogical Evidence of Metamorphic Rock from Southwestern Tianshan. Earth Science, 49(8): 2751-2765. doi: 10.3799/dqkx.2023.066
    Citation: Dou Ping, Xiao Yuanyuan, Lin Jinyan, Yao Yongxiang, 2024. Fluid-Rock Interaction in Subduction Zones: Mineralogical Evidence of Metamorphic Rock from Southwestern Tianshan. Earth Science, 49(8): 2751-2765. doi: 10.3799/dqkx.2023.066

    Fluid-Rock Interaction in Subduction Zones: Mineralogical Evidence of Metamorphic Rock from Southwestern Tianshan

    doi: 10.3799/dqkx.2023.066
    • Received Date: 2023-02-11
      Available Online: 2024-08-27
    • Publish Date: 2024-08-25
    • Southwestern Tianshan HP-UHP metamorphic belt developed subduction-zone metamorphic rocks affected by large-scale fluid flows, its veins and host rocks provide important informations about the infiltrating fluid in subduction zone. Based on the previous bulk-rock geochemical studies on metamorphic rocks developed veins in the subduction zone, We have conducted an in situ element study of glaucophane, garnet, omphacite, phengite and other minerals in the veins and host rocks of the metamorphic rock samples to compare the compositional differences of the same mineral in veins and host rocks. This study aims to deeply understand the differences of bulk rock compositions between veins and host rocks, and the geochemical behaviors of related elements in the fluid-rock interaction and fluid properties in subduction zones. According to the petrological characteristics, the samples can be divided into glaucophane-rich veins, epidote and carbonate-rich transitional part and the omphacite-rich interiors.The calculation of element budgets reveal that the relationship between the difference of bulk-rock compositions and host minerals and their abundances. The higher contents of medium-heavy rare earth element (M-HREE) in veins reflects the occurrence of M-HREE by more garnets in veins; and the higher contents of rare earth elements-Th-U-Pb-Sr in the transitional part reflects a large number of epidote group minerals and carbonates controlthese elements; the higher contents of K-Rb-Ba-Cs in omphacite-rich interiors reflects the control of these elements by phengite. On the other hand, the compositional differences of the same mineral in different parts of the rock samples can reflect the geochemical changes of elements in different metamorphic stages and different rehydration degrees directly.Compared with the omphacite-rich interior representing the least fluidinfiltration, the rehydration of external fluid decreased the abundances of phengite and omphacite in the veins and transitional part, and enriched K-Rb-Ba-Cs-Pb-Sr; increased abundance of garnet butdepleted HREE; increased abundance of epidote but depleted in Th-U-light rare earth elements (LREE). Combined with the large amount of carbonates in transitional part, it is speculated that the external fluid is carbonate-bearing serpentinite-derived fluid. After the fluid- rock interaction, the contents of LILE increased and the carbonate component of the fluid decreased significantly in fluid, but the contents of other elements show less variation.

       

    • loading
    • Ague, J. J., 2011. Extreme Channelization of Fluid and the Problem of Element Mobility during Barrovian Metamorphism. American Mineralogist, 96(2/3): 333-352. https://doi.org/10.2138/am.2011.3582
      Bebout, G. E., 2007. Metamorphic Chemical Geodynamics of Subduction Zones. Earth and Planetary Science Letters, 260(3/4): 373-393. https://doi.org/10.1016/j.epsl. 2007. 05.050 doi: 10.1016/j.epsl.2007.05.050
      Beinlich, A., Klemd, R., John, T., et al., 2009. Trace-Element Mobilization during Ca-Metasomatism along a Major Fluid Conduit: Eclogitization of Blueschist as a Consequence of Fluid-Rock Interaction. Geochimica et Cosmochimica Acta, 74(6): 1892-1922. https://doi.org/10.1016/j.gca.2009.12.011
      Chen, S., Wang, X. H., Niu, Y. L., et al., 2017. Simple and Cost-Effective Methods for Precise Analysis of Trace Element Abundances in Geological Materials with ICP-MS. Science Bulletin, 62(4): 277-289. https://doi.org/10.1016/j.scib.2017.01.004
      Gao, J., Klemd, R., 2001. Primary Fluids Entrapped at Blueschist to Eclogite Transition: Evidence from the Tianshan Meta-Subduction Complex in Northwestern China. Contributions to Mineralogy and Petrology, 142(1): 1-14. https://doi.org/10.1007/s004100100275
      Gao, J., Klemd, R., 2003. Formation of HP-LT Rocks and their Tectonic Implications in the Western Tianshan Orogen, NW China: Geochemical and Age Constraints. Lithos, 66(1/2): 1-22. https://doi.org/10.1016/s0024-4937(02)00153-6
      Hermann, J., Rubatto, D., 2009. Accessory Phase Control on the Trace Element Signature of Sediment Melts in Subduction Zones. Chemical Geology, 265(3/4): 512-526. https://doi.org/10.1016/j.chemgeo.2009.05.018
      Herms, P., John, T., Bakker, R. J., et al., 2012. Evidence for Channelized External Fluid Flow and Element Transfer in Subducting Slabs (Raspas Complex, Ecuador). Chemical Geology, 310-311: 79-96. https://doi.org/10.1016/j.chemgeo.2012.03.023
      Huang, H. W., 2021. The Formation Mechanism of the Omphacite Veins in Blueschists from Southwestern Tianshan (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      John, T., Gussone, N., Podladchikov, Y. Y., et al., 2012. Volcanic Arcs Fed by Rapid Pulsed Fluid Flow through Subducting Slabs. Nature Geoscience, 5(7): 489-492. https://doi.org/10.1038/ngeo1482
      John, T., Klemd, R., Gao, J., et al., 2008. Trace-Element Mobilization in Slabs Due to Non Steady-State Fluid-Rock Interaction: Constraints from an Eclogite-Facies Transport Vein in Blueschist (Tianshan, China). Lithos, 103(1): 1-24. https://doi.org/10.1016/j.lithos.2007.09.005
      Klemd, R., Bröcker, M., Hacker, B. R., et al., 2005. New Age Constraints on the Metamorphic Evolution of the High‐Pressure/Low‐Temperature Belt in the Western Tianshan Mountains, NW China. The Journal of Geology, 113(2): 157-168. https://doi.org/10.1086/427666
      Kong, J. J., Niu, Y. L., Sun, P., et al., 2019. The Origin and Geodynamic Significance of the Mesozoic Dykes in Eastern Continental China. Lithos, 332-333(4): 328-339. https://doi.org/10.1016/j.lithos.2019.02.024
      Li, J. L., Gao, J., John, T., et al., 2013. Fluid-Mediated Metal Transport in Subduction Zones and Its Link to Arc-Related Giant Ore Deposits: Constraints from a Sulfide-Bearing Hp Vein in Lawsonite Eclogite (Tianshan, China). Geochimica et Cosmochimica Acta, 120: 326-362. https://doi.org//10.1016/j.gca.2013.06.023
      Li, J. L., John, T., Gao, J., et al., 2017. Subduction Channel Fluid-Rock Interaction and Mass Transfer: Constraints from a Retrograde Vein in Blueschist (SW Tianshan, China). Chemical Geology, 456: 28-42. https://doi.org/10.1016/j.chemgeo.2017.03.003
      Li, J. L., Klemd, R., Gao, J., et al., 2012. Coexisting Carbonate-Bearing Eclogite and Blueschist in SW Tianshan, China: Petrology and Phase Equilibria. Journal of Asian Earth Sciences, 60: 174-187. https://doi.org/10.1016/j.jseaes.2012.08.015
      Lü, Z., Bucher, K., 2018. The Coherent Ultrahigh-Pressure Terrane of the Tianshan Meta-Ophiolite Belt, NW China. Lithos, 314-315: 260-273. https://doi.org/10.1016/j.lithos.2018.06.004
      Lü, Z., Zhang, L., Du, J., et al., 2012. Petrology of Hp Metamorphic Veins in Coesite-Bearing Eclogite from Western Tianshan, China: Fluid Processes and Elemental Mobility During Exhumation in a Cold Subduction Zone. LITHOS, 136-139: 168-186. https://doi.org/10.1016/j.lithos.2011.10.011
      Peng, W. G., Zhang, L. F., Shen, T. T., 2018. Implications for the Deep Carbon Cycle from the Carbonation in Subduction Zones: A Case Study of Carbonated Micaschists from Chinese Southwestern Tianshan. Acta Petrologica Sinica, 34(4): 1204-1218 (in Chinese with English abstract).
      Shen, T. T., Hermann, J., Zhang, L. F., et al., 2015. UHP Metamorphism Documented in Ti-Chondrodite- and Ti-Clinohumite-Bearing Serpentinized Ultramafic Rocks from Chinese Southwestern Tianshan. Journal of Petrology, 56(7): 1425-1458. https://doi.org/10.1093/petrology/egv042
      Straaten, F. v. d., Halama, R., John, T., et al., 2012. Tracing the Effects of High-Pressure Metasomatic Fluids and Seawater Alteration in Blueschist-Facies Overprinted Eclogites: Implications for Subduction Channel Processes. Chemical Geology, 292-293: 69-87. https://doi.org/10.1016/j.chemgeo.2011.11.008
      Straaten, F. v. d., Volker, S., Timm, J., et al., 2008. Blueschist-Facies Rehydration of Eclogites (Tian Shan, NW-China): Implications for Fluid-Rock Interaction in the Subduction Channel. Chemical Geology, 255: 195-219. https://doi.org/10.1016/j.chemgeo.2008.06.037
      Su, W., Gao, J., Klemd, R., et al., 2010. U-Pb Zircon Geochronology of Tianshan Eclogites in NW China: Implication for the Collision between the Yili and Tarim Blocks of the Southwestern Altaids. European Journal of Mineralogy, 22(4): 473-478. https://doi.org/10.1127/0935-1221/2010/0022-2040
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Syracuse, E. M., Abers, G. A., 2006. Global Compilation of Variations in Slab Depth beneath Arc Volcanoes and Implications. Geochemistry, Geophysics, Geosystems, 7(5): 1-15. https://doi.org/10.1029/2005gc001045
      Tan, Z., Agard, P., Gao, J., et al., 2017. P-T-Time-Isotopic Evolution of Coesite-Bearing Eclogites: Implications for Exhumation Processes in SW Tianshan. Lithos, 278-281: 1-25. https://doi.org/10.1016/j.lithos.2017.01.010
      Wang, L., Zhang, G. B., 2023. Fractionation Behavior of Stable Isotopes (Fe-K-Li-B-Ba) in Subducted Plates. Earth Science, 49(2): 685-699(in Chinese with English abstract).
      Wei, C., Wang, W., Clarke, G. L., et al., 2009. Metamorphism of High/Utrahigh-Pressure Pelitic-Felsic Schist in the South Tianshan Orogen, NW China: Phase Equilibria and P-T Path. Journal of Petrology, 50(10): 1973-1991. https://doi.org/10.1093/petrology/egp064
      Wu, K., Yuan, H. L., Lyu, N., et al., 2020. The Behavior of Fluid Mobile Elements during Serpentinization and Dehydration of Serpentinites in Subduction Zones. Acta Petrologica Sinica, 36(1): 141-153 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.01.14
      Wu, W. W., Yang, J. S., 2022. How is the Deep Subducted Crustal Material Recycled to Earth Surface? Earth Science, 47(10): 3772-3775 (in Chinese with English abstract).
      Xiao, W. J., Windley, B. F., Yuan, C., et al., 2009. Paleozoic Multiple Subduction-Accretion Processes of the Southern Altaids. American Journal of Science, 309(3): 221-270. https://doi.org/10.2475/03.2009.02
      Xiao, Y. Y., An, Z., Chen, S., et al., 2020. Mineral Compositions of Syn-Collisional Granitoids and their Implications for the Formation of Juvenile Continental Crust and Adakitic Magmatism. Journal of Petrology, 61(3). https://doi.org/10.1093/petrology/egaa038
      Xiao, Y., Niu, Y., Li, H., et al., 2014. Trace Element Budgets and (Re-) Distribution During Subduction-Zone Ultrahigh Pressure Metamorphism: Evidence from Western Tianshan, China. Chemical Geology, 365: 54-68. https://doi.org/10.1016/j.chemgeo.2013.12.005
      Xiao, Y. Y., Niu, Y. L., Wang, K. L., et al., 2017. Different Stages of Chemical Alteration on Metabasaltic Rocks in the Subduction Channel: Evidence from the Western Tianshan Metamorphic Belt, NW China. Journal of Asian Earth Sciences, 145(2-3): 111-122. https://doi.org/10.1016/j.jseaes.2017.06.001
      Xiao, Y., Niu, Y., Wang, K. L., et al., 2016. Geochemical Behaviours of Chemical Elements During Subduction-Zone Metamorphism and Geodynamic Significance. International Geology Review, 58(10): 1253-1277. https://doi.org/10.1080/00206814.2016.1147987
      Yang, X., Zhang, L. F., Tian, Z. L., et al., 2013. Petrology and U-Pb Zircon Dating of Coesite-Bearing Metapelite from the Kebuerte Valley, Western Tianshan, China. Journal of Asian Earth Sciences, 70-71: 295-307. https://doi.org/10.1016/j.jseaes.2013.03.020
      Zack, T., John, T., 2007. An Evaluation of Reactive Fluid Flow and Trace Element Mobility in Subducting Slabs. Chemical Geology, 239(3/4): 199-216. https://doi.org/10.1016/j.chemgeo.2006.10.020
      Zhang, L. F., Chu, X., Zhang, L., et al., 2018. The Early Exhumation History of the Western Tianshan UHP Metamorphic Belt, China: New Constraints from Titanite U-Pb Geochronology and Thermobarometry. Journal of Metamorphic Geology, 36(5): 631-651. https://doi.org/10.1111/jmg.12422
      Zheng, Y. F., Chen, R. X., Xu, Z., et al., 2016. The Transport of Water in Subduction Zones. Science China Earth Sciences, 59(4): 651-682. https://doi.org/10.1007/s11430-015-5258-4
      黄宏炜, 2021. 西南天山蓝片岩中绿辉石脉体的形成机制(硕士毕业论文). 北京: 中国地质大学(北京), 64.
      彭卫刚, 张立飞, 申婷婷, 等, 2018. 俯冲带碳酸盐化对深部碳循环的启示: 以中国西南天山碳酸盐化云母片岩为例. 岩石学报, 34(4): 1204-1218. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201804021.htm
      王琳, 张贵宾, 2023. 俯冲板片稳定同位素(Fe-K-Li-B-Ba)的分馏行为. 地球科学, 49(2): 685-699 doi: 10.3799/dqkx.2022.176
      吴凯, 袁洪林, 吕楠, 等, 2020. 蛇纹石化和俯冲带蛇纹岩变质脱水过程中流体活动性元素的行为. 岩石学报, 36(1): 141-153. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202001014.htm
      吴魏伟, 杨经绥, 2022. 深俯冲地壳物质如何循环至地表? 地球科学, 47(10): 3772-3775. doi: 10.3799/dqkx.2022.803
    • dqkxzx-49-8-2751-附表1.docx
      dqkxzx-49-8-2751-附表3.zip
      dqkxzx-49-8-2751-附表2.zip
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)

      Article views (583) PDF downloads(90) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return