Citation: | Peng Chaoyong, Cheng Zhenpeng, Zheng Yu, Xu Zhiqiang, 2024. Real-Time Continuous Estimation of Seismic Source Rupture Characteristics Considering P-Wave Early Warning Parameters. Earth Science, 49(2): 391-402. doi: 10.3799/dqkx.2023.167 |
Allen, R. M., Melgar, D., 2019. Earthquake Early Warning: Advances, Scientific Challenges, and Societal Needs. Annual Review of Earth and Planetary Sciences, 47(1): 361-388. https://doi.org/10.1146/annurev-earth-053018-060457
|
Böse, M., 2006. Earthquake Early Warning for Istanbul using Artificial Neural Networks(Dissertation). Karlsruhe University, Karlsruhe, 19-24.
|
Böse, M., Heaton, T. H., Hauksson, E., 2012. Real-Time Finite Fault Rupture Detector (FinDer) for Large Earthquakes. Geophysical Journal International, 191(2): 803-812. https://doi.org/10.1111/j.1365-246X.2012.05657.x
|
Böse, M., Smith, D. E., Felizardo, C., et al., 2018. FinDer v. 2: Improved Real-Time Ground-Motion Predictions for M2-M9 with Seismic Finite-Source Characterization. Geophysical Journal International, 212(1): 725-742. https://doi.org/10.1093/gji/ggx430
|
Böse, M., Andrews, J., Hartog, R., et al., 2023. Performance and Next-Generation Development of the Finite-Fault Rupture Detector (FinDer) within the United States West Coast ShakeAlertWarning System. Bulletin of the Seismological Society of America, 113(2): 648-663. https://doi.org/10.1785/0120220183
|
Cheng, J., Rong, Y. F., Magistrale, H., et al., 2020. Earthquake Rupture Scaling Relations for Mainland China. Seismological Research Letters, 91(1): 248-261. https://doi.org/10.1785/0220190129
|
Chung, A. I., Meier, M. A., Andrews, J., et al., 2020. ShakeAlertEarthquake Early Warning System Performance during the 2019 Ridgecrest Earthquake Sequence. Bulletin of the Seismological Society of America, 110(4): 1904-1923. https://doi.org/10.1785/0120200032
|
Cui, P., Wang, J., Wang, H., et al., 2022. How to Scientifically Prevent, Manage and Prewarn Catastrophic Risk?. Earth Science, 47(10): 3897-3899 (in Chinese with English abstract).
|
Fang, L. H., Wu, J. P., Wang, W. L., et al., 2013. Relocation of the Mainshock and Aftershock Sequences of MS7.0 Sichuan Lushan Earthquake. Chinese Science Bulletin, 58: 3451-3459. https://doi.org/10.1007/s11434-013-6000-2
|
Hoshiba, M., Iwakiri, K., Hayashimoto, N., et al., 2011. Outline of the 2011 off the Pacific Coast of Tohoku Earthquake (MW 9.0): Earthquake Early Warning and Observed Seismic Intensity. Earth Planets & Space, 63(7): 547-551. https://doi.org/10.5047/eps.2011.05.031
|
Hu, J. J., Ding, Y. T., Zhang, H., et al., 2023. A Real-Time Seismic Intensity Prediction Model Based on Long Short-Term Memory Neural Network. Earth Science, 48(5): 1853-1864 (in Chinese with English abstract).
|
Huang, Y., Wu, J. P., Zhang, T. Z., et al., 2008. Relocation of the Wenchuan MS8.0 Great Earthquake and Its Aftershock Sequences. Science in China: Earth Sciences, 38(10): 1242-1249 (in Chinese).
|
Kodera, Y., Saitou, J., Hayashimoto, N., et al., 2016. Earthquake Early Warning for the 2016 Kumamoto Earthquake: Performance Evaluation of the Current System and the Next-Generation Methods of the Japan Meteorological Agency. Earth Planets & Space, 68(1): 202. https://doi.org/10.1186/s40623-016-0567-1
|
Kurahashi, S., Irikura, K., 2011. Source Model for Generating Strong Ground Motions during the 2011 off the Pacific Coast of Tohoku Earthquake. Earth Planets & Space, 63(7): 571-576. https://doi.org/10.5047/eps.2011.06.044
|
Li, J. W., Böse, M., Feng, Y., et al., 2021. Real-Time Characterization of Finite Rupture and its Implication for Earthquake Early Warning: Application of FinDer to Existing and Planned Stations in Southwest China. Frontiers in Earth Science, 9: 699560. https://doi.org/10.3389/feart.2021.699560
|
Lu, J. Q., Li, S. Y., 2021. Detailed Analysis and Preliminary Performance Evaluation of the FinDer: A Real-Time Finite Fault Rupture Detector for Earthquake Early Warning. World Earthquake Engineering, 37(1): 152-164 (in Chinese with English abstract).
|
Massin, F., Clinton, J., Böse, M., 2021. Status of Earthquake Early Warning in Switzerland. Frontiers in Earth Science, 9: 707654. https://doi.org/10.3389/feart.2021.707654
|
Peng, C. Y., Yang, J. S., Xue, B., et al., 2013. Research on Correlation between Early-Warning Parameters and Magnitude for the Wenchuan Earthquake and Its Aftershocks. Chinese Journal of Geophysics, 56(10): 3404-3415 (in Chinese with English abstract).
|
Peng, C. Y., Yang, J. S., Xue, B., et al., 2014. Exploring the Feasibility of Earthquake Early Warning using Record of the 2008 Wenchuan Earthquake and its Aftershocks. Soil Dynamics and Earthquake Engineering, 57: 86-93. https://doi.org/10.1016/j.soildyn.2013.11.005
|
Peng, C. Y., Yang, J. S., Zheng, Y., et al., 2017. New τc Regression Relationship Derived from all P Wave Time Windows for Rapid Magnitude Estimation. Geophysical Research Letters, 44: 1724-1731. https://doi.org/10.1002/2016GL071672
|
Peng, C. Y., Yang, J. S., 2019. Real-Time Estimation of Potentially Damaged Zone for Earthquake Early Warning Based on Thresholds of P-Wave Parameters. Acta Seismologica Sinica, 41(3): 354-365 (in Chinese with English abstract).
|
Peng, C. Y., Ma, Q., Jiang, P., et al., 2020. Performance of a Hybrid Demonstration Earthquake Early Warning System in the Sichuan-Yunnan Border Region. Seismological Research Letters, 91: 835-846. https://doi.org/10.1785/0220190101
|
Peng, C. Y., Jiang, P., Ma, Q., et al., 2021. Performance Evaluation of an Earthquake Early Warning System in the 2019-2020 M6.0 Changning, Sichuan, China, Seismic Sequence. Frontiers in Earth Science, 9: 699941. https://doi.org/10.3389/feart.2021.699941
|
Peng, C. Y., Zheng, Y., Xu, Z. Q., et al., 2021. Construction and Verification of Onsite Ground Motion Prediction Models for Seismic Intensity Instrument. Acta Seismologica Sinica, 43(5): 643-655 (in Chinese with English abstract).
|
Song, J. D., Jiao, C. C., Li, S. Y., et al., 2018. Prediction Method of First-Level Earthquake Warning for High Speed Railway Based on Two-Parameter Threshold of Seismic P-Wave. China Railway Science, 39(1): 138-144 (in Chinese with English abstract).
|
Wang, D., Sun, K., 2022. How the Big Data Seismology and AI Refine Rapid Determination of Source Parameters of Large Earthquakes? Earth Science, 47(10): 3915-3917 (in Chinese with English abstract).
|
Wells, D. L., Coppersmith, K. J., 1994. New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement. Bulletin of the Seismological Society of America, 84(4): 974-1002. https://doi.org/10.1007/BF00808290
|
Xia, Y. S., Yang, L, P., 2000. Research on Earthquake Prediction (Warning) System and its Disaster Reduction Benefit. Northwestern Seismological Journal, 22(4): 425-457 (in Chinese with English abstract).
|
Yamada, M., Heaton, T., 2008. Real-Time Estimation of Fault Rupture Extent Using Envelopes of Acceleration. Bulletin of the Seismological Society of America, 98(2): 607-619. https://doi.org/10.1785/0120060218
|
Yamada, M., 2014. Estimation of Fault Rupture Extent Using Near-Source Records for Earthquake Early Warning. In: Wenzel, F., Zschau, J., eds., Early Warning for Geological Disasters, Advanced Technologies in Earth Sciences, Springer, Berlin, 29-48.
|
Yu, Y. X., Wang, S. Y., 2006. Attenuation Relations for Horizontal Peak Ground Acceleration and Response Spectrum in Eastern and Western China. Technology for Earthquake Disaster Prevention, 1(3): 1-12 (in Chinese with English abstract).
|
Zhang, H. C., Jin, X., Wang, S. C., et al., 2017. Comparative Analyses of Records by Seismic Intensity Instrument with Strong Ground Motion Records and Seismograph Stations Records: Taking the ML4.5 Changli Earthquake of Hebei Province for an Example. Acta Seismologica Sinica, 39(2): 273-285 (in Chinese with English abstract).
|
Zhang, Y., Wang, R. J., Zschau, J., et al., 2014a. Automatic Imaging of Earthquake Rupture Processes by Iterative Deconvolution and Stacking of High-Rate GPS and Strong Motion Seismograms. Journal of Geophysical Research, 119(7): 5633-5650. https://doi.org/10.1002/2013JB010469
|
Zhang, Y., Wang, R. J., Chen, Y. T., et al., 2014b. Kinematic Rupture Model and Hypocenter Relocation of the 2013 MW6.6 Lushan Earthquake Constrained by Strong-Motion and Teleseismic Data. Seismological Research Letters, 85: 15-22. https://doi.org/10.1785/0220130126
|
崔鹏, 王姣, 王昊, 等, 2022. 如何科学防控与预警巨灾风险?. 地球科学, 47(10): 3897-3899. doi: 10.3799/dqkx.2022.855
|
胡进军, 丁袆天, 张辉, 等, 2023. 基于长短期记忆神经网络的实时地震烈度预测模型. 地球科学, 48(5): 1853-1864. doi: 10.3799/dqkx.2022.338
|
黄媛, 吴建平, 张天中, 等, 2008. 汶川8.0级大地震及其余震序列重定位研究. 中国科学: 地球科学, 38(10): 1242-1249. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200810008.htm
|
卢建旗, 李山有, 2021. 地震预警断层参数实时识别方法(FinDer)详解及其性能初步评价. 世界地震工程, 37(1): 152-164. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC202101018.htm
|
彭朝勇, 杨建思, 薛兵, 等, 2013. 基于汶川主震及余震的预警参数与震级相关性研究. 地球物理学报, 56(10): 3404-3415. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201310016.htm
|
彭朝勇, 杨建思, 2019. 利用P波参数阈值实时估算地震预警潜在破坏区范围. 地震学报, 41(3): 354-365. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB201903007.htm
|
彭朝勇, 郑钰, 徐志强, 等. 2021. 面向地震烈度仪的现地地震动预测模型的构建与验证. 地震学报, 43(5): 643-655. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB202105009.htm
|
宋晋东, 教聪聪, 李山有, 等, 2018. 基于地震P波双参数阈值的高速铁路Ⅰ级地震警报预测方法. 中国铁道科学, 39(1): 138-144. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201801021.htm
|
王墩, 孙琨, 2022. 地震大数据和AI如何改进全球大震参数快速测定?地球科学, 47(10): 3915-3917. doi: 10.3799/dqkx.2022.863
|
夏玉胜, 杨丽萍, 2000. 地震预警(报)系统及减灾效益研究. 西北地震学报, 22(4): 425-457. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ200004017.htm
|
俞言祥, 汪素云, 2006. 中国东部和西部地区水平向基岩加速度反应谱衰减关系. 震灾防御技术, 1(3): 206-217. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZFY200603005.htm
|
张红才, 金星, 王士成, 等, 2017. 烈度仪记录与强震及测震记录的对比分析: 以2015年河北昌黎ML4.5地震为例. 地震学报, 39(2): 273-285. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB201702010.htm
|