• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 12
    Dec.  2024
    Turn off MathJax
    Article Contents
    Yang Jianjun, Dai Jiawen, Wu Jia, Wang Kaixing, Liu Xiaodong, Yu Chida, Liu Wenheng, Zhu Kunhe, 2024. Geochemical Characterization of Hematite in Haidewula Uranium Deposit of East Kunlun Orogenic Belt and Its Implication for Mineralizing Fluids. Earth Science, 49(12): 4351-4368. doi: 10.3799/dqkx.2023.180
    Citation: Yang Jianjun, Dai Jiawen, Wu Jia, Wang Kaixing, Liu Xiaodong, Yu Chida, Liu Wenheng, Zhu Kunhe, 2024. Geochemical Characterization of Hematite in Haidewula Uranium Deposit of East Kunlun Orogenic Belt and Its Implication for Mineralizing Fluids. Earth Science, 49(12): 4351-4368. doi: 10.3799/dqkx.2023.180

    Geochemical Characterization of Hematite in Haidewula Uranium Deposit of East Kunlun Orogenic Belt and Its Implication for Mineralizing Fluids

    doi: 10.3799/dqkx.2023.180
    • Received Date: 2023-05-31
      Available Online: 2025-01-09
    • Publish Date: 2024-12-25
    • The Haidewula uranium deposit is located in the South Kunlun Belt of the East Kunlun orogenic belt and represents the first independent volcanic-related uranium deposit in the Qinghai-Tibet plateau of China. While previous studies have examined the mineralization characteristics of the deposits, there has been preliminarily studied by predecessors, but the ore-forming fluid and gangue minerals of the deposit have been poorly limited research on the ore-forming fluids and gangue minerals. Hematite, which is commonly found in various uranium deposits, is closely associated with uranium mineralization. This research focuses on studying the petrographic and mineral chemical characteristics of hematite in the Haidewula uranium deposit to investigate its implications for the source and nature of the ore-forming fluid. The aim is to provide a theoretical foundation for understanding the genesis of the Haidewula deposit and guide future prospecting and exploration efforts. The findings reveal that fissure-filled hematite in the early stage of mineralization is formed through alkali alteration and cavitation effect. The mineralization clumpy hematite in the metallogenic period is a result of the reaction between strongly oxidized metallogenic hydrothermal fluids and Fe2+ in pyrite and surrounding rock. This reaction restricts the oxidation of the mineralizing environment, reduces the oxidation of the mineralizing fluid, and leads to the precipitation of pitchblende. The ore-forming fluid during the formation of hematite in the Haidewula uranium deposit exhibits characteristics of a mixing of meteoric water and mantle-derived fluid. The mantle-derived fluid may have a connection with Triassic diabase magmatic activity. The fluid during the hematite formation is a high oxygen fugacity Cl- rich fluid, which gradually changes from a Cl- rich acidic fluid to an alkaline fluid through reactions with the surrounding rock. The simultaneous enrichment of U-Mo-W in Haidewula hematite suggests that the ore-forming materials in the deposit may primarily originate from the host felsic volcanic rock.

       

    • loading
    • Ayers, J. C., Watson, E. B., 1993. Apatite/Fluid Partitioning of Rare-Earth Elements and Strontium: Experimental Results at 1.0 GPa and 1 000 ℃ and Application to Models of Fluid-Rock Interaction. Chemical Geology, 110(1-3): 299-314. https://doi.org/10.1016/0009-2541(93)90259-l
      Ballouard, C., Poujol, M., Mercadier, J., et al., 2018. Uranium Metallogenesis of the Peraluminous Leucogranite from the Pontivy-Rostrenen Magmatic Complex (French Armorican Variscan Belt): The Result of Long-Term Oxidized Hydrothermal Alteration during Strike-Slip Deformation. Mineralium Deposita, 53(5): 601-628. https://doi.org/10.1007/s00126-017-0761-5
      Belperio, A., Flint, R., Freeman, H., 2007. Prominent Hill: A Hematite-Dominated, Iron Oxide Copper-Gold System. Economic Geology, 102(8): 1499-1510. https://doi.org/10.2113/gsecongeo.102.8.1499
      Bonnetti, C., Liu, X. D., Mercadier, J., et al., 2021. Genesis of the Volcanic-Related Be-U-Mo Baiyanghe Deposit, West Junggar (NW China), Constrained by Mineralogical, Trace Element and U-Pb Isotope Signatures of the Primary U Mineralisation. Ore Geology Reviews, 128: 103921. https://doi.org/10.1016/j.oregeorev.2020.103921
      Cabral, A. R., Zeh, A., Galbiatti, H. F., et al., 2015. Late Cambrian Au-Pd Mineralization and Fe Enrichment in the Itabira District, Minas Gerais, Brazil, at 496 Ma: Constraints from U-Pb Monazite Dating of a Jacutinga Lode. Economic Geology, 110(1): 263-272. https://doi.org/10.2113/econgeo.110.1.263
      Chabiron, A., Cuney, M., Poty, B., 2003. Possible Uranium Sources for the Largest Uranium District Associated with Volcanism: The Streltsovka Caldera (Transbaikalia, Russia). Mineralium Deposita, 38(2): 127-140. https://doi.org/10.1007/s00126-002-0289-0
      Ciobanu, C. L., Wade, B. P., Cook, N. J., et al., 2013. Uranium-Bearing Hematite from the Olympic Dam Cu-U-Au Deposit, South Australia: A Geochemical Tracer and Reconnaissance Pb-Pb Geochronometer. Precambrian Research, 238: 129-147. https://doi.org/10.1016/j.precamres.2013.10.007
      Cook, N. J., Ciobanu, C. L., George, L., et al., 2016. Trace Element Analysis of Minerals in Magmatic-Hydrothermal Ores by Laser Ablation Inductively-Coupled Plasma Mass Spectrometry: Approaches and Opportunities. Minerals, 6(4): 111-134. https://doi.org/10.3390/min6040111
      Courtney-Davies, L., Tapster, S. R., Ciobanu, C. L., et al., 2019. A Multi-Technique Evaluation of Hydrothermal Hematite U-Pb Isotope Systematics: Implications for Ore Deposit Geochronology. Chemical Geology, 513: 54-72. https://doi.org/10.1016/j.chemgeo.2019.03.005
      Cuney, M., 2014. Felsic Magmatism and Uranium Deposits. Bulletin de La Société Géologique de France, 185(2): 75-92. https://doi.org/10.2113/gssgfbull.185.2.75
      Deng, T., Chi, G. X., Zhang, X. J., et al., 2022. Mass Transfer during Hematitization and Implications for Uranium Mineralization in the Zoujiashan Deposit, Xiangshan Volcanic Basin. Journal of Earth Science, 33(2): 422-434. https://doi.org/10.1007/s12583-021-1479-y
      Dmitrijeva, M., Ehrig, K. J., Ciobanu, C. L., et al., 2019. Defining IOCG Signatures through Compositional Data Analysis: A Case Study of Lithogeochemical Zoning from the Olympic Dam Deposit, South Australia. Ore Geology Reviews, 105: 86-101. https://doi.org/10.1016/j.oregeorev.2018.12.013
      Dong, Y. P., He, D. F., Sun, S. S., et al., 2018. Subduction and Accretionary Tectonics of the East Kunlun Orogen, Western Segment of the Central China Orogenic System. Earth-Science Reviews, 186: 231-261. https://doi.org/10.1016/j.earscirev.2017.12.006
      Graf, J. L., 1977. Rare Earth Elements as Hydrothermal Tracers during the Formation of Massive Sulfide Deposits in Volcanic Rocks. Economic Geology, 72(4): 527-548. https://doi.org/10.2113/gsecongeo.72.4.527
      Guo, F. S., Li, Z. H., Deng, T., et al., 2020. Key Factors Controlling Volcanic-Related Uranium Mineralization in the Xiangshan Basin, Jiangxi Province, South China: A Review. Ore Geology Reviews, 122: 103517. https://doi.org/10.1016/j.oregeorev.2020.103517
      Hein, J. R., Koschinsky, A., Halbach, P., et al., 1997. Iron and Manganese Oxide Mineralization in the Pacific. Geological Society, London, Special Publications, 119(1): 123-138. https://doi.org/10.1144/gsl.sp.1997.119.01.09
      Hu, J., 2015. Ore-Forming Age, Metallogenic Geodynamic Setting and Genesis of the Dahongliutan Iron Ore Deposit, West Kunlun, Xinjiang(Dissertation). Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou(in Chinese with English abstract).
      Hu, R. Z., Burnard, P. G., Bi, X. W., et al., 2009. Mantle-Derived Gaseous Components in Ore-Forming Fluids of the Xiangshan Uranium Deposit, Jiangxi Province, China: Evidence from He, Ar and C Isotopes. Chemical Geology, 266(1-2): 86-95. https://doi.org/10.1016/j.chemgeo.2008.07.017
      Keyser, W., Ciobanu, C. L., Cook, N. J., et al., 2018. Petrography and Trace Element Signatures of Iron-Oxides in Deposits from the Middleback Ranges, South Australia: From Banded Iron Formation to Ore. Ore Geology Reviews, 93: 337-360. https://doi.org/10.1016/j.oregeorev.2018.01.006
      Krneta, S., Ciobanu, C. L., Cook, N. J., et al., 2017. Rare Earth Element Behaviour in Apatite from the Olympic Dam Cu-U-Au-Ag Deposit, South Australia. Minerals, 7(8): 135-161. https://doi.org/10.3390/min7080135
      Langmuir, D., 1978. Uranium Solution-Mineral Equilibria at Low Temperatures with Applications to Sedimentary Ore Deposits. Geochimica et Cosmochimica Acta, 42(6): 547-569. https://doi.org/10.1016/0016-7037(78)90001-7
      Lei, Y. L., Dai, J. W., Bai, Q., et al., 2021. Genesis and Implications of Peraluminous A-Type Rhyolite in the Haidewula Area, East Kunlun Orogen. Acta Petrologica Sinica, 37(7): 1964-1982(in Chinese with English abstract). doi: 10.18654/1000-0569/2021.07.02
      Li, Y. Q., Duan, J. H., Dai, J. W., et al., 2021. Geochemical Characteristics of Host Rocks and Uranium Mineralization in Haidewula Area, Qinghai. Uranium Geology, 37(4): 643-652(in Chinese with English abstract).
      Li, Z. H., Zhu, X. K., 2012. Geochemical Features of Xuanlong Type Iron Ore Deposit in Hebei Province and Their Geological Significances. Acta Petrologica Sinica, 28(9): 2903-2911(in Chinese with English abstract).
      Li, Z. Y., 2006. Hostspot Uranium Metallogenesis in South China. Uranium Geology, 22(2): 65-69, 82(in Chinese with English abstract).
      Li, Z. Y., Li, X. Z., Lin, J. R., 1999. On the Meso Cenozoic Mantle Plume Tectonics, Its Relationship to Uranium Metallogenesis and Prospecting Directions in South China. Uranium Geology, 15(1): 9-17(in Chinese with English abstract).
      Ling, H. F., 2011. Origin of Hydrothermal Fluids of Granite-Type Uranium Deposits: Constraints from Redox Conditions. Geological Review, 57(2): 193-206(in Chinese with English abstract).
      Liu, B., Ma, C. Q., Jiang, H. A., et al., 2013. Early Paleozoic Tectonic Transition from Ocean Subduction to Collisional Orogeny in the Eastern Kunlun Region: Evidence from Huxiaoqin Mafic Rocks. Acta Petrologica Sinica, 29(6): 2093-2106(in Chinese with English abstract).
      Makvandi, S., Huang, X. W., Beaudoin, G., et al., 2021. Trace Element Signatures in Hematite and Goethite Associated with the Kiggavik-Andrew Lake Structural Trend U Deposits (Nunavut, Canada). Mineralium Deposita, 56(3): 509-535. https://doi.org/10.1007/s00126-020-00980-y
      Migdisov, A., Williams-Jones, A. E., Brugger, J., et al., 2016. Hydrothermal Transport, Deposition, and Fractionation of the REE: Experimental Data and Thermodynamic Calculations. Chemical Geology, 439: 13-42. https://doi.org/10.1016/j.chemgeo.2016.06.005
      Montreuil, J. F., Corriveau, L., Potter, E. G., et al., 2016. On the Relationship between Alteration Facies and Metal Endowment of Iron Oxide-Alkali-Altered Systems, Southern Great Bear Magmatic Zone (Canada). Economic Geology, 111(8): 2139-2168. https://doi.org/10.2113/econgeo.111.8.2139
      Min, M. Z., Wu, J. Q., Qi, Y. S., et al., 1992. Experimental Studies in Radiolysis of Water Facilitating Hematitization of Hostrocks in Uranium Deposits. Uranium Geology, 8(1): 25-28(in Chinese with English abstract).
      Nadoll, P., Angerer, T., Mauk, J. L., et al., 2014. The Chemistry of Hydrothermal Magnetite: A Review. Ore Geology Reviews, 61: 1-32. https://doi.org/10.1016/j.oregeorev.2013.12.013
      Oksuz, N., Kocak, I., 2016. Geochemical Evidence for the Genesis of the Sarical-Yavu Hematite Mineralizations (Sivas, Central Turkey). Arabian Journal of Geosciences, 9(6): 479. https://doi.org/10.1007/s12517-016-2432-8
      Pei, X. Z., Li, R. B., Li, Z. C., et al., 2018. Composition Feature and Formation Process of Buqingshan Composite Accretionary Mélange Belt in Southern Margin of East Kunlun Orogen. Earth Science, 43(12): 4498-4520(in Chinese with English abstract).
      Salem, I. A., Ibrahim, M. E., Abd El Monsef, M., 2010. Mineralogy, Geochemistry, and Origin of Hydrothermal Manganese Veins at Wadi Maliek, Southern Eastern Desert, Egypt. Arabian Journal of Geosciences, 5(3): 385-406.
      Skirrow, R. G., Mercadier, J., Armstrong, R., et al., 2016. The Ranger Uranium Deposit, Northern Australia: Timing Constraints, Regional and Ore-Related Alteration, and Genetic Implications for Unconformity-Related Mineralisation. Ore Geology Reviews, 76: 463-503. https://doi.org/10.1016/j.oregeorev.2015.09.001
      Sun, L. Q., Wang, K. X., Dai, J. W., et al., 2024. Petrogenesis of Haidewula Diabase, Eastern Kunlun Orogenic Belt and Its Geological Implications. Earth Science, 49(4): 1261-1276(in Chinese with English abstract).
      Verdugo-Ihl, M. R., Ciobanu, C. L., Cook, N. J., et al., 2017. Textures and U-W-Sn-Mo Signatures in Hematite from the Olympic Dam Cu-U-Au-Ag Deposit, South Australia: Defining the Archetype for IOCG Deposits. Ore Geology Reviews, 91: 173-195. https://doi.org/10.1016/j.oregeorev.2017.10.007
      Verdugo-Ihl, M. R., Ciobanu, C. L., Cook, N. J., et al., 2019. Defining Early Stages of IOCG Systems: Evidence from Iron Oxides in the Outer Shell of the Olympic Dam Deposit, South Australia. Mineralium Deposita, 55(3): 429-452. https://doi.org/10.1007/s00126-019-00896-2
      Wang, Y. J., Nie, J. T., Lin, J. R., et al., 2022. Mineralization Characteristics and Geochemical Elements Migration during Alkali Metasomatized Hydrothermal Process of Yunji Deposit in Xiangshan Uranium Ore Field. Acta Petrologica Sinica, 38(9): 2865-2888(in Chinese with English abstract).
      Xu, Z. G., 2004. Discussion on the Division of Metallogenic Domains in China. Mineral Deposits, 23(Suppl. 1): 54-61(in Chinese with English abstract).
      Xu, Z. Q., Yang, J. S., Li, H. B., et al., 2006. The Early Palaeozoic Terrene Framework and the Formation of the High-Pressure (HP) and Ultra-High Pressure (UHP) Metamorphic Belts at the Central Orogenic Belt (COB). Acta Geologica Sinica, 80(12): 1793-1806(in Chinese with English abstract).
      Yu, D. G., Wu, R. G., Chen, P. R., 2005. Geology of Uranium Resources. Harbin Engineering University Press, Harbin, 121-122(in Chinese).
      Zhang, H., Wang, Z. Q., Ma, C. Q., et al., 2018. Proto-Tethys Record in Paleo-Tethys Belt of East Kunlun: Evidence from Kuhai Mafic Blocks. Earth Science, 43(4): 1164-1188(in Chinese with English abstract).
      Zhang, H., 1988. Discussing about Reddenizaton in Hydrothermal Uranium Deposits. Journal of East China University of Technology (Natural Science), 11(1): 39-46(in Chinese with English abstract).
      Zhang, L., Li, X. F., Wang, G., 2020. The Characteristics, Research Progresses and Prospects of Volcanogenic Uranium Deposits. Acta Petrologica Sinica, 36(2): 575-588(in Chinese with English abstract). doi: 10.18654/1000-0569/2020.02.15
      Zhu, K. H., Dai, J. W., Wang, K. X., et al., 2022. Age and Genesis of Pitchblende of the Haidewula Uranium Deposit, East Kunlun Orogen and Its Geological Significance. Earth Science, 47(8): 2940-2950(in Chinese with English abstract).
      Zhu, K. H., Wang, K. X., Liu, X. D., et al., 2024. Study on Fluid Characteristics of the Haidewula Uranium Deposit, East Kunlun Orogenic Belt. Acta Geologica Sinica, 98(2): 467-480(in Chinese with English abstract).
      Zhu, Y. H., Zhu, Y. S., Lin, Q. X., et al., 2003. Characteristics of Early Jurassic Volcanic Rocks and Their Tectonic Significance in Haidewula, East Kunlun Orogenic Belt, Qinghai Province. Earth Science, 28(6): 653-659(in Chinese with English abstract).
      Zong, K. Q., Klemd, R., Yuan, Y., et al., 2017. The Assembly of Rodinia: The Correlation of Early Neoproterozoic (ca. 900 Ma) High-Grade Metamorphism and Continental Arc Formation in the Southern Beishan Orogen, Southern Central Asian Orogenic Belt (CAOB). Precambrian Research, 290: 32-48. https://doi.org/10.1016/j.precamres.2016.12.010
      Zou, M. L., Huang, H. Y., Liu, X. Y., et al., 2017. Characterization of Arsenic-Bearing Pyrite and the Relationship with Uranium Metallogenic in the Central Zhuguang Pluton, Southern China. Geological Review, 63(4): 1021-1039(in Chinese with English abstract).
      胡军, 2015. 西昆仑大红柳滩铁矿床成矿时代、动力学背景及成因研究(博士学位论文). 广州: 中国科学院研究生院(广州地球化学研究所).
      雷勇亮, 戴佳文, 白强, 等, 2021. 东昆仑造山带海德乌拉铝质A型流纹岩成因及其意义. 岩石学报, 37(7): 1964-1982.
      李彦强, 段建华, 戴佳文, 等, 2021. 青海海德乌拉地区火山岩型铀矿含矿主岩地球化学及铀矿化特征研究. 铀矿地质, 37(4): 643-652.
      李志红, 朱祥坤, 2012. 河北省宣龙式铁矿的地球化学特征及其地质意义. 岩石学报, 28(9): 2903-2911.
      李子颖, 2006. 华南热点铀成矿作用. 铀矿地质, 22(2): 65-69, 82.
      李子颖, 李秀珍, 林锦荣, 1999. 试论华南中新生代地幔柱构造、铀成矿作用及其找矿方向. 铀矿地质, 15(1): 9-17.
      凌洪飞, 2011. 论花岗岩型铀矿床热液来源: 来自氧逸度条件的制约. 地质论评, 57(2): 193-206.
      刘彬, 马昌前, 蒋红安, 等, 2013. 东昆仑早古生代洋壳俯冲与碰撞造山作用的转换: 来自胡晓钦镁铁质岩石的证据. 岩石学报, 29(6): 2093-2106.
      闵茂中, 吴俊奇, 戚成云, 等, 1992. 水辐射分解促进铀矿床围岩赤铁矿化蚀变的实验研究. 铀矿地质, 8(1): 25-28.
      裴先治, 李瑞保, 李佐臣, 等, 2018. 东昆仑南缘布青山复合增生型构造混杂岩带组成特征及其形成演化过程. 地球科学, 43(12): 4498-4520. doi: 10.3799/dqkx.2018.124
      孙立强, 王凯兴, 戴佳文, 等, 2024. 东昆仑造山带海德乌拉辉绿岩成因及其地质意义. 地球科学, 49(4): 1261-1276. doi: 10.3799/dqkx.2022.270
      王勇剑, 聂江涛, 林锦荣, 等, 2022. 相山铀矿田云际矿床碱交代型铀矿化蚀变作用及组分迁移规律研究. 岩石学报, 38(9): 2865-2888.
      徐志刚, 2004. 关于中国成矿域划分的讨论. 矿床地质, 23(增刊1): 54-61.
      许志琴, 杨经绥, 李海兵, 等, 2006. 中央造山带早古生代地体构架与高压/超高压变质带的形成. 地质学报, 80(12): 1793-1806.
      余达淦, 吴仁贵, 陈培荣, 2005. 铀资源地质学. 哈尔滨: 哈尔滨工程大学出版社, 121-122.
      张航, 王宗起, 马昌前, 等, 2018. 东昆仑古特提斯构造带中的原特提斯记录: 来自苦海镁铁质岩块的证据. 地球科学, 43(4): 1164-1188. doi: 10.3799/dqkx.2018.714
      张宏, 1988. 热液铀矿床中的红化问题. 华东地质学院学报, 11(1): 39-46.
      张龙, 李晓峰, 王果, 2020. 火山岩型铀矿床的基本特征、研究进展与展望. 岩石学报, 36(2): 575-588.
      朱坤贺, 戴佳文, 王凯兴, 等, 2022. 东昆仑造山带海德乌拉铀矿床沥青铀矿年代学特征及成因. 地球科学, 47(8): 2940-2950. doi: 10.3799/dqkx.2021.216
      朱坤贺, 王凯兴, 刘晓东, 等, 2024. 东昆仑造山带海德乌拉铀矿床成矿流体特征研究. 地质学报, 98(2): 467-480.
      朱云海, 朱耀生, 林启祥, 等, 2003. 东昆仑造山带海德乌拉一带早侏罗世火山岩特征及其构造意义. 地球科学, 28(6): 653-659. http://www.earth-science.net/article/id/1308
      邹明亮, 黄宏业, 刘鑫扬, 等, 2017. 华南诸广岩体中段含砷黄铁矿特征及其与铀成矿关系. 地质论评, 63(4): 1021-1039.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(13)

      Article views (274) PDF downloads(39) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return