• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 3
    Mar.  2025
    Turn off MathJax
    Article Contents
    Xie Baozeng, Tang Dongjie, Liu Yajie, Yang Xinnan, Ke Zhutong, Sun Longfei, Li Chao, Wang Xinqiang, Shi Xiaoying, 2025. Authigenic Clay Minerals from North China Reveal Spatiotemporal Variations in Shallow Seawater Redox Conditions during the Terminal Mesoproterozoic. Earth Science, 50(3): 1066-1081. doi: 10.3799/dqkx.2024.135
    Citation: Xie Baozeng, Tang Dongjie, Liu Yajie, Yang Xinnan, Ke Zhutong, Sun Longfei, Li Chao, Wang Xinqiang, Shi Xiaoying, 2025. Authigenic Clay Minerals from North China Reveal Spatiotemporal Variations in Shallow Seawater Redox Conditions during the Terminal Mesoproterozoic. Earth Science, 50(3): 1066-1081. doi: 10.3799/dqkx.2024.135

    Authigenic Clay Minerals from North China Reveal Spatiotemporal Variations in Shallow Seawater Redox Conditions during the Terminal Mesoproterozoic

    doi: 10.3799/dqkx.2024.135
    • Received Date: 2024-11-24
      Available Online: 2025-03-19
    • Publish Date: 2025-03-25
    • This study investigates the environmental context for the rapid evolution of crown-group eukaryotes during the Late Mesoproterozoic, focusing on sedimentological and mineralogical analyses of clastic rocks from the Changlongshan Formation across four sections of the North China Craton. In the Huailai section, fine-to-coarse sandstones from the deep-to-shallow subtidal zones are dominated by chamosite, indicating an anoxic, ferruginous marine environment. Conversely, glauconite dominates silty mudstone and muddy siltstone in the deep subtidal zone, reflecting suboxic conditions. In the Mentougou section, medium-to-coarse sandstones from the shallow subtidal zone are rich in chamosite, suggesting persistent anoxic, ferruginous conditions. In the Jixian and Lulong sections, deep subtidal zone sandstones are dominated by glauconite, indicative of suboxic environments. These results reveal pronounced spatiotemporal variations in redox conditions across the shallow seas of North China during the deposition of the Changlongshan Formation. While oxygenation facilitated the emergence of Longfengshania algae, the spatiotemporal discontinuity in the distribution of oxic water bodies may have limited the sustained evolution and widespread distribution of eukaryotes.

       

    • loading
    • Alcott, L. J., Mills, B. J. W., Bekker, A., et al., 2022. Earth's Great Oxidation Event Facilitated by the Rise of Sedimentary Phosphorus Recycling. Nature Geoscience, 15: 210-215. https://doi.org/10.1038/s41561-022-00906-5
      Banerjee, S., Choudhury, T. R., Saraswati, P. K., et al., 2020. The Formation of Authigenic Deposits during Paleogene Warm Climatic Intervals: A Review. Journal of Palaeogeography, 9(1): 27. https://doi.org/10.1186/s42501-020-00076-8
      Banerjee, S., Mondal, S., Chakraborty, P. P., et al., 2015. Distinctive Compositional Characteristics and Evolutionary Trend of Precambrian Glaucony: Example from Bhalukona Formation, Chhattisgarh Basin, India. Precambrian Research, 271: 33-48. https://doi.org/10.1016/j.precamres.2015.09.026
      Bansal, U., Banerjee, S., Nagendra, R., 2020. Is the Rarity of Glauconite in Precambrian Bhima Basin in India Related to Its Chloritization? Precambrian Research, 336: 105509. https://doi.org/10.1016/j.precamres.2019.105509
      Cole, D. B., Reinhard, C. T., Wang, X. L., et al., 2016. A Shale-Hosted Cr Isotope Record of Low Atmospheric Oxygen during the Proterozoic. Geology, 44(7): 555-558. https://doi.org/10.1130/g37787.1
      Deng, Y., Wang, H. J., Lü, D., et al., 2021. Evolution of the 1.8-1.6 Ga Yanliao and Xiong'er Basins, North China Craton. Precambrian Research, 365: 106383. https://doi.org/10.1016/j.precamres.2021.106383
      Du, R. L., 1982. The Discovery of the Fossils such as Chuaria in the Qingbaikou System in Northwestern Hebei and Their Significance. Geological Review, 28(1): 1-6 (in Chinese with English abstract).
      Du, R. L., Tian, L. F., 1985. Discovery and Preliminary Study of Mega-Alga Longfengshania from the Qingbaikou System of the Yanshan Mountain Area. Acta Geological Sinica, 59(3): 183-190 (in Chinese with English abstract).
      Du, R. L, Tian, L. F., Hu, H. B., et al., 2009. The Neoproterozoic Qingbaikou Period Longfengshan Biota. Science Press, Beijing (in Chinese).
      Gao, L. Z., Zhang, C. H., Liu, P. J., et al., 2009. Reclassification of the Meso- and Neoproterozoic Chronostratigraphy of North China by SHRIMP Zircon Ages. Acta Geologica Sinica-English Edition, 83(6): 1074-1084. https://doi.org/10.1111/j.1755-6724.2009.00135.x
      Gilleaudeau, G. J., Frei, R., Kaufman, A. J., et al., 2016. Oxygenation of the Mid-Proterozoic Atmosphere: Clues from Chromium Isotopes in Carbonates. Geochemical Perspectives Letters, 2(2): 178-187. https://doi.org/10.7185/geochemlet.1618
      Gong, H., Gao, F. H., Jia, X. Y., 2023. The Response of Geochemical Characteristics to Neoproterozoic Great Oxidation Event from Nanfen Formation in Tonghua Area. Journal of Jilin University (Earth Science Edition), Online (in Chinese with English abstract).
      Jahnke, L., Klein, H. P., 1979. Oxygen as a Factor in Eukaryote Evolution: Some Effects of Low Levels of Oxygen on Saccharomyces Cerevisiae. Origins of Life, 9(4): 329-334. https://doi.org/10.1007/BF00926825
      Jahnke, L., Klein, H. P., 1983. Oxygen Requirements for Formation and Activity of the Squalene Epoxidase in Saccharomyces Cerevisiae. Journal of Bacteriology, 155(2): 488-492. https://doi.org/10.1128/jb.155.2.488-492.1983
      Jing, Y. H., Chen, Z. Q., Anderson, R. P., et al., 2022. Microscopic and Geochemical Analyses of the Tonian Longfengshan Biota from the Luotuoling Formation (Hebei Province, North China) with Taphonomic Implications. Precambrian Research, 382: 106899. https://doi.org/10.1016/j.precamres.2022.106899
      Kuang, H. W., Peng, N., Liu, Y. Q., et al., 2023. Is There a Great Unconformity between Xiamaling and Longshan Formations in the North China Craton? Science China Earth Sciences, 66(5): 959-984. https://doi.org/10.1007/s11430-022-1034-9
      Li, H. K., Lu, S. N., Su, W. B., et al., 2013. Recent Advances in the Study of the Mesoproterozoic Geochronology in the North China Craton. Journal of Asian Earth Sciences, 72: 216-227. https://doi.org/10.1016/j.jseaes.2013.02.020
      Liaoning Institute of Geological Exploration, 2017. Regional Geology of China-Records of Liaoning. Geological Publishing House, Beijing (in Chinese).
      Lin, Y. T., Tang, D. J., Shi, X. Y., et al., 2019. Shallow-Marine Ironstones Formed by Microaerophilic Iron-Oxidizing Bacteria in Terminal Paleoproterozoic. Gondwana Research, 76: 1-18. https://doi.org/10.1016/j.gr.2019.06.004
      Lü, D., Deng, Y., Wang, H. J., et al., 2021. Using Cyclostratigraphic Evidence to Define the Unconformity Caused by the Mesoproterozoic Qinyu Uplift in the North China Craton. Journal of Asian Earth Sciences, 206: 104608. https://doi.org/10.1016/j.jseaes.2020.104608
      Lü, D., Deng, Y., Wang, X. M., et al., 2022. New Chronological and Paleontological Evidence for Paleoproterozoic Eukaryote Distribution and Stratigraphic Correlation between the Yanliao and Xiong'er Basins, North China Craton. Precambrian Research, 371: 106577. https://doi.org/10.1016/j.precamres.2022.106577
      Lu, S. N., Yang, C. L., Li, H. K., et al., 2002. A Group of Rifting Events in the Terminal Paleoproterozoic in the North China Craton. Gondwana Research, 5(1): 123-131. https://doi.org/10.1016/S1342-937X(05)70896-0
      Lu, S. N., Zhao, G. C., Wang, H. C., et al., 2008. Precambrian Metamorphic Basement and Sedimentary Cover of the North China Craton: A Review. Precambrian Research, 160(1-2): 77-93. https://doi.org/10.1016/j.precamres.2007.04.017
      Luo, G. M., Junium, C. K., Kump, L. R., et al., 2014. Shallow Stratification Prevailed for ∼1 700 to ∼1 300 Ma Ocean: Evidence from Organic Carbon Isotopes in the North China Craton. Earth and Planetary Science Letters, 400: 219-232. https://doi.org/10.1016/j.epsl.2014.05.020
      Lyons, T. W., Diamond, C. W., Planavsky, N. J., et al., 2021. Oxygenation, Life, and the Planetary System during Earth's Middle History: An Overview. Astrobiology, 21(8): 906-923. https://doi.org/10.1089/ast.2020.2418
      Ma, J. B., Shi, X. Y., Lechte, M., et al., 2022. Mesoproterozoic Seafloor Authigenic Glauconite-Berthierine: Indicator of Enhanced Reverse Weathering on Early Earth. American Mineralogist, 107(1): 116-130. https://doi.org/10.2138/am-2021-7904
      Miao, L., Yin, Z., Knoll, A. H., et al., 2024. 1.63-Billion-Year-Old Multicellular Eukaryotes from the Chuanlinggou Formation in North China. Sci Adv, 10(4): eadk3208. https://doi.org/10.1126/sciadv.adk3208
      Mills, B., Lenton, T. M., Watson, A. J., 2014. Proterozoic Oxygen Rise Linked to Shifting Balance between Seafloor and Terrestrial Weathering. Proceedings of the National Academy of Sciences of the United States of America, 111(25): 9073-9078. https://doi.org/10.1073/pnas.1321679111
      Mills, D. B., Simister, R. L., Sehein, T. R., et al., 2024. Constraining the Oxygen Requirements for Modern Microbial Eukaryote Diversity. Proceedings of the National Academy of Sciences of the United States of America, 121(2): e2303754120. https://doi.org/10.1073/pnas.2303754120
      Niu, S. W., 2019. More on the Morphological Characteristics and Systematic Texology of Genus Longfengshania Du, 1982 (Magascopic Alga). Geological Bulletin of China, 38(8): 1259-1265 (in Chinese with English abstract).
      Planavsky, N. J., Reinhard, C. T., Wang, X. L., et al., 2014. Low Mid-Proterozoic Atmospheric Oxygen Levels and the Delayed Rise of Animals. Science, 346(6209): 635-638. https://doi.org/10.1126/science.1258410
      Qiao, X. F., Gao, L. Z., Zhang, C. H., 2007. New Idea of the Meso- and Neoproterozoic Chronostratigraphic Chart and Tectonic Environment in Sino-Korean Plate. Geological Bulletin of China, 26(5): 503-509 (in Chinese with English abstract).
      Reinhard, C. T., Planavsky, N. J., Olson, S. L., et al., 2016. Earth's Oxygen Cycle and the Evolution of Animal Life. Proceedings of the National Academy of Sciences of the United States of America, 113(32): 8933-8938. https://doi.org/10.1073/pnas.1521544113
      Shang, M. H., Tang, D. J., Shi, X. Y., et al., 2019. A Pulse of Oxygen Increase in the Early Mesoproterozoic Ocean at Ca. 1.57-1.56 Ga. Earth and Planetary Science Letters, 527: 115797. https://doi.org/10.1016/j.epsl.2019.115797
      Stolper, D. A., Revsbech, N. P., Canfield, D. E., 2010. Aerobic Growth at Nanomolar Oxygen Concentrations. Proceedings of the National Academy of Sciences, 107(44): 18755-18760. https://doi.org/10.1073/pnas.1013435107
      Stüeken, E. E., Kipp, M. A., Koehler, M. C., et al., 2016. The Evolution of Earth's Biogeochemical Nitrogen Cycle. Earth-Science Reviews, 160: 220-239. https://doi.org/10.1016/j.earscirev.2016.07.007
      Su, W. B., Li, H. K., Warren, D. H., et al., 2010. Zircon SHRIMP U-Pb Ages of Tuff in the Tieling Formation and Their Geological Significance. Chinese Science Bulletin, 55(29): 3312-3323. https://doi.org/10.1007/s11434-010-4007-5
      Tang, D. J., Ma, J. B., Shi, X. Y., et al., 2020. The Formation of Marine Red Beds and Iron Cycling on the Mesoproterozoic North China Platform. American Mineralogist, 105(9): 1412-1423. https://doi.org/10.2138/am-2020-7406
      Tang, D. J., Shi, X. Y., Jiang, G. Q., et al., 2017b. Ferruginous Seawater Facilitates the Transformation of Glauconite to Chamosite: An Example from the Mesoproterozoic Xiamaling Formation of North China. American Mineralogist, 102(11): 2317-2332. https://doi.org/10.2138/am-2017-6136
      Tang, D. J., Shi, X. Y., Ma, J. B., et al., 2017a. Formation of Shallow-Water Glaucony in Weakly Oxygenated Precambrian Ocean: An Example from the Mesoproterozoic Tieling Formation in North China. Precambrian Research, 294: 214-229. https://doi.org/10.1016/j.precamres.2017.03.026
      Tang, D. J., Shi, X. Y., Wang, X. Q., et al., 2016. Extremely Low Oxygen Concentration in Mid-Proterozoic Shallow Seawaters. Precambrian Research, 276: 145-157. https://doi.org/10.1016/j.precamres.2016.02.005
      Tang, F., 1995. Macroalgal Fossil of Changlongshan Stage in Beijing Region and Their Significance. Professional Papers of Stratigraphy and Palaeontology, 26: 24-36 (in Chinese with English abstract).
      Wang, H. Y., Liu, A. R., Li, C., et al., 2021. A Benthic Oxygen Oasis in the Early Neoproterozoic Ocean. Precambrian Research, 355: 106085. https://doi.org/10.1016/j.precamres.2020.106085
      Wang, H. Z., 1985. Atlas of the Palaeogeography of China. Cartographic Publishing House, Beijing (in Chinese).
      Wang, H. Z., Shi, X. Y., Wang, X. L., et al., 2001. Research on the Sequence Stratigraphy of China. Guangdong Science and Technology Press, Guangzhou (in Chinese).
      Wang, L. F., Li, W. X., Luo, J. L., et al., 2000. The Study on Sedimentary Facies of Changlongshan Formation of Neoproterozoic Era in Huailai, Hebei. World Geology, 19(2): 138-143 (in Chinese with English abstract).
      Xie, B. Z., Zhu, J. M., Wang, X. L., et al., 2023. Mesoproterozoic Oxygenation Event: From Shallow Marine to Atmosphere. GSA Bulletin, 135(3-4): 753-766. https://doi.org/10.1130/b36407.1
      Yang, X. Q., Yang, G. W., Li, C., et al., 2025. Pulse of Intense Oxidative Weathering during the Latest Paleoproterozoic. Geology, 53(1): 78-82. https://doi.org/10.1130/g52373.1
      Zhai, M. G., Zhu, X. Y., Zhou, Y. Y., et al., 2020. Continental Crustal Evolution and Synchronous Metallogeny through Time in the North China Craton. Journal of Asian Earth Sciences, 194: 104169. https://doi.org/10.1016/j.jseaes.2019.104169
      Zhang, K., Zhu, X. K., Wood, R. A., et al., 2018. Oxygenation of the Mesoproterozoic Ocean and the Evolution of Complex Eukaryotes. Nature Geoscience, 11(5): 345-350. https://doi.org/10.1038/s41561-018-0111-y
      Zhang, S. C., Su, J., Ma, S. H., et al., 2021. Eukaryotic Red and Green Algae Populated the Tropical Ocean 1 400 Million Years Ago. Precambrian Research, 357: 106166. https://doi.org/10.1016/j.precamres.2021.106166
      Zhang, S. C., Wang, X. M., Wang, H. J., et al., 2016a. Sufficient Oxygen for Animal Respiration 1, 400 Million Years Ago. Proceedings of the National Academy of Sciences, 113(7): 1731-1736. https://doi.org/10.1073/pnas.1523449113
      Zhang, S. H., Zhao, Y., Ye, H., et al., 2016b. Early Neoproterozoic Emplacement of the Diabase Sill Swarms in the Liaodong Peninsula and Pre-Magmatic Uplift of the Southeastern North China Craton. Precambrian Research, 272: 203-225. https://doi.org/10.1016/j.precamres.2015.11.005
      Zhang, S., Wang, X., Hammarlund, E. U., et al., 2015. Orbital Forcing of Climate 1.4 Billion Years Ago. Proceedings of the National Academy of Sciences, 112(12): E1406-E1413. https://doi.org/10.1073/pnas.1502239112
      Zhao, G. C., Li, S. Z., Sun, M., et al., 2011. Assembly, Accretion, and Break-Up of the Palaeo- Mesoproterozoic Columbia Supercontinent: Record in the North China Craton Revisited. International Geology Review, 53(11-12): 1331-1356. https://doi.org/10.1080/00206814.2010.527631
      Zhao, H. Q., Zhang, S. H., Ding, J. K., et al., 2020. New Geochronologic and Paleomagnetic Results from Early Neoproterozoic Mafic Sills and Late Mesoproterozoic to Early Neoproterozoic Successions in the Eastern North China Craton, and Implications for the Reconstruction of Rodinia. Geological Society of America Bulletin, 132(3-4): 739-766. https://doi.org/10.1130/B35198.1
      Zhou, H. R., Mei, M. X., Luo, Z. Q., et al., 2006. Sedimentary Sequence and Stratigraphic Framework of the Neoproterozoic Qingbaikou System in the Yanshan Region, North China. Earth Science Frontiers, 13(6): 280-290 (in Chinese with English abstract).
      Zhu, S. X., Liu, H., Hu, J., 2012. On the Disintegration of the Neoproterozoic Qingbaikouan System in Yanshan Range, North China. North China Geology, 35(2): 81-95 (in Chinese with English abstract).
      Zhu, S. X., Zhu, M. Y., Knoll, A. H., et al., 2016. Decimetre-Scale Multicellular Eukaryotes from the 1.56-Billion-Year-Old Gaoyuzhuang Formation in North China. Nature Communications, 7: 11500. https://doi.org/10.1038/ncomms11500
      杜汝霖, 1982. 冀西北青白口系Chuaria等化石的发现及其意义. 地质论评, 28(1): 1-6.
      杜汝霖, 田立富, 1985. 燕山青白口系宏观藻类龙凤山藻属的发现和初步研究. 地质学报, 59(3): 183-190.
      杜汝霖, 田立富, 胡华斌, 等, 2009. 新元古代青白口纪龙凤山生物群. 北京: 科学出版社.
      龚辉, 高福红, 贾啸宇, 2023. 吉林省通化地区南芬组地球化学特征对新元古代大氧化事件的响应. 吉林大学学报(地球科学版), 在线出版. https://doi.org/10.13278/j.cnki.jjuese.20230218
      辽宁省地质勘查院, 2017. 中国区域地质志辽宁志, 北京: 地质出版社.
      牛绍武, 2019. 再论龙凤山藻属(Longfengshania Du)的形态学特征与系统分类. 地质通报, 38(8): 1259-1265.
      乔秀夫, 高林志, 张传恒, 2007. 中朝板块中、新元古界年代地层柱与构造环境新思考. 地质通报, 26(5): 503-509.
      唐烽, 1995. 北京地区青白口纪长龙山期宏观藻类的新发现. 地层古生物论文集, 26: 24-36.
      王鸿祯, 1985. 中国古地理图集. 北京: 地图出版社.
      王鸿祯, 史晓颖, 王训练, 等, 2001. 中国层序地层研究. 广州: 广东科技出版社.
      王立峰, 李文宣, 罗均林, 等, 2000. 河北省怀来新元古代长龙山组沉积相研究. 世界地质, 19(2): 138-143.
      周洪瑞, 梅冥相, 罗志清, 等, 2006. 燕山地区新元古界青白口系沉积层序与地层格架研究. 地学前缘, 13(6): 280-290.
      朱士兴, 刘欢, 胡军, 2012. 论燕山地区青白口系的解体. 地质调查与研究, 35(2): 81-95.
    • dqkxzx-50-3-1066_附表.xlsx
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)

      Article views (136) PDF downloads(50) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return