Citation: | Chen Xinyang, Li Biao, Li Chao, 2025. Chemical Weathering during the Neoproterozoic Snowball Earth Events. Earth Science, 50(3): 1048-1065. doi: 10.3799/dqkx.2025.006 |
Algeo, T. J., Hong, H. L., Wang, C. W., 2025. The Chemical Index of Alteration (CIA) and Interpretation of ACNK Diagrams. Chemical Geology, 671: 122474. https://doi.org/10.1016/j.chemgeo.2024.122474
|
Allen, P. A., Etienne, J. L., 2008. Sedimentary Challenge to Snowball Earth. Nature Geoscience, 1: 817-825. https://doi.org/10.1038/ngeo355
|
Bahlburg, H., Dobrzinski, N., 2011. A Review of the Chemical Index of Alteration (CIA) and Its Application to the Study of Neoproterozoic Glacial Deposits and Climate Transitions. Geological Society, London, Memoirs, 36: 81-92. https://doi.org/10.1144/m36.6
|
Benn, D. I., Le Hir, G., Bao, H. M., et al., 2015. Orbitally Forced Ice Sheet Fluctuations during the Marinoan Snowball Earth Glaciation. Nature Geoscience, 8: 704-707. https://doi.org/10.1038/ngeo2502
|
Berner, R. A., Lasaga, A. C., Garrels, R. M., 1983. The Carbonate-Silicate Geochemical Cycle and Its Effect on Atmospheric Carbon Dioxide over the Past 100 Million Years. American Journal of Science, 283(7): 641-683. https://doi.org/10.2475/ajs.283.7.641
|
Busfield, M. E., Le Heron, D. P., 2016. A Neoproterozoic Ice Advance Sequence, Sperry Wash, California. Sedimentology, 63(2): 307-330. https://doi.org/10.1111/sed.12210
|
Cai, X. F., Luo, Z. J., Ye, Q., 2017. Sedimentary Characteristics of the Nantuo Formation in Siduping, Hunan and Its Coupling Relationship with Paleoclimate. East China Geology, 38(2): 91-98 (in Chinese with English abstract)
|
Cheng, M., Zhang, Z. H., Algeo, T. J., et al., 2021. Hydrological Controls on Marine Chemistry in the Cryogenian Nanhua Basin (South China). Earth-Science Reviews, 218: 103678. https://doi.org/10.1016/j.earscirev.2021.103678
|
Cox, G. M., Halverson, G. P., Stevenson, R. K., et al., 2016. Continental Flood Basalt Weathering as a Trigger for Neoproterozoic Snowball Earth. Earth and Planetary Science Letters, 446: 89-99. https://doi.org/10.1016/j.epsl.2016.04.016
|
Cox, R., Lowe, D. R., Cullers, R. L., 1995. The Influence of Sediment Recycling and Basement Composition on Evolution of Mudrock Chemistry in the Southwestern United States. Geochimica et Cosmochimica Acta, 59(14): 2919-2940. https://doi.org/10.1016/0016-7037(95)00185-9
|
Ding, H. F., Ma, D. S., Yao, C. Y., et al., 2009. Sedimentary Environment of Ediacaran Glacigenic Diamictite in Guozigou of Xinjiang, China. Chinese Science Bulletin, 54(18): 3283-3294. https://doi.org/10.1007/s11434-009-0443-5
|
Dodd, M. S., Shi, W., Li, C., et al., 2023. Uncovering the Ediacaran Phosphorus Cycle. Nature, 618: 974-980. https://doi.org/10.1038/s41586-023-06077-6
|
Fairchild, I. J., Fleming, E. J., Bao, H. M., et al., 2016. Continental Carbonate Facies of a Neoproterozoic Panglaciation, North-East Svalbard. Sedimentology, 63(2): 443-497. https://doi.org/10.1111/sed.12252
|
Feng, L. J., Chu, X. L., Zhang, Q. R., et al., 2003. CIA (Chemical Index of Alteration)and Its Applications in the Neoproterozoic Clastic Rocks. Earth Science Frontiers, 10(4): 539-544 (in Chinese with English abstract)
|
Feng, L. J., Chu, X. L., Zhang, Q. R., et al., 2004. New Evidence for a Cold Climate during the Deposition of the Xieshuihe Formation in Northeast Hunan. Science Bulletin, 49(12): 1172-1178 (in Chinese).
|
Fleming, E. J., Benn, D. I., Stevenson, C. T. E., et al., 2016. Glacitectonism, Subglacial and Glacilacustrine Processes during a Neoproterozoic Panglaciation, North-East Svalbard. Sedimentology, 63(2): 411-442. https://doi.org/10.1111/sed.12251
|
Fu, H. J., Jian, X., Liang, H. H., 2021. Research Progress of Sediment Indicators and Methods for Evaluation of Silicate Chemical Weathering Intensity. Journal of Palaeogeography (Chinese Edition), 23(6): 1192-1209 (in Chinese with English abstract)
|
Fu, H. J., Jian, X., Pan, H. Q., 2023. Bias in Sediment Chemical Weathering Intensity Evaluation: A Numerical Simulation Study. Earth-Science Reviews, 246: 104574. https://doi.org/10.1016/j.earscirev.2023.104574
|
Gan, T., Tian, M., Wang, X. K., et al., 2024. Lithium Isotope Evidence for a Plumeworld Ocean in the Aftermath of the Marinoan Snowball Earth. Proceedings of the National Academy of Sciences, 121(46): e2407419121. https://doi.org/10.1073/pnas.2407419121
|
Gernon, T. M., Hincks, T. K., Tyrrell, T., et al., 2016. Snowball Earth Ocean Chemistry Driven by Extensive Ridge Volcanism during Rodinia Breakup. Nature Geoscience, 9: 242-248. https://doi.org/10.1038/ngeo2632
|
Goddéris, Y., Le Hir, G., Macouin, M., et al., 2017. Paleogeographic Forcing of the Strontium Isotopic Cycle in the Neoproterozoic. Gondwana Research, 42: 151-162. https://doi.org/10.1016/j.gr.2016.09.013
|
Halverson, G. P., Dudás, F. Ö., Maloof, A. C., et al., 2007. Evolution of the 87Sr/86Sr Composition of Neoproterozoic Seawater. Palaeogeography, Palaeoclimatology, Palaeoecology, 256(3-4): 103-129. https://doi.org/10.1016/j.palaeo.2007.02.028
|
Halverson, G. P., Wade, B. P., Hurtgen, M. T., et al., 2010. Neoproterozoic Chemostratigraphy. Precambrian Research, 182(4): 337-350. https://doi.org/10.1016/j.precamres.2010.04.007
|
Hoffman, P. F., 2016. Cryoconite Pans on Snowball Earth: Supraglacial Oases for Cryogenian Eukaryotes? Geobiology, 14(6): 531-542. https://doi.org/10.1111/gbi.12191
|
Hoffman, P. F., Abbot, D. S., Ashkenazy, Y., et al., 2017. Snowball Earth Climate Dynamics and Cryogenian Geology-Geobiology. Science Advances, 3(11): e1600983. https://doi.org/10.1126/sciadv.1600983
|
Hoffman, P. F., Kaufman, A. J., Halverson, G. P., et al., 1998. A Neoproterozoic Snowball Earth. The American Journal of Case Reports, 281(5381): 1342-1346. https://doi.org/10.1126/science.281.5381.1342
|
Hoffman, P. F., Li, Z. X., 2009. A Palaeogeographic Context for Neoproterozoic Glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, 277(3-4): 158-172. https://doi.org/10.1016/j.palaeo.2009.03.013
|
Hood, A. V. S., Penman, D. E., Lechte, M. A., et al., 2022. Neoproterozoic Syn-Glacial Carbonate Precipitation and Implications for a Snowball Earth. Geobiology, 20(2): 175-193. https://doi.org/10.1111/gbi.12470
|
Hu, J., Li, C., Tong, J. N., et al., 2020. Glacial Origin of the Cryogenian Nantuo Formation in Eastern Shennongjia Area (South China): Implications for Macroalgal Survival. Precambrian Research, 351: 105969. https://doi.org/10.1016/j.precamres.2020.105969
|
Hu, J., Wang, J. S., Chen, H. R., et al., 2012. Multiple Cycles of Glacier Advance and Retreat during the Nantuo (Marinoan) Glacial Termination in the Three Gorges Area. Frontiers of Earth Science, 6(1): 101-108. https://doi.org/10.1007/s11707-011-0179-9
|
Huang, K. J., Teng, F. Z., Shen, B., et al., 2016. Episode of Intense Chemical Weathering during the Termination of the 635 Ma Marinoan Glaciation. Proc Natl Acad Sci USA, 113(52): 14904-14909. https://doi.org/10.1073/pnas.1607712113
|
Jacobsen, S. B., Kaufman, A. J., 1999. The Sr, C and O Isotopic Evolution of Neoproterozoic Seawater. Chemical Geology, 161(1): 37-57. https://doi.org/10.1016/S0009-2541(99)00080-7
|
Kennedy, M. J., Christie-Blick, N., Prave, A. R., 2001. Carbon Isotopic Composition of Neoproterozoic Glacial Carbonates as a Test of Paleoceanographic Models for Snowball Earth Phenomena. Geology, 29(12): 1135-1138. https://doi.org/10.1130/0091-7613(2001)0291135:cicong>2.0.co;2 doi: 10.1130/0091-7613(2001)0291135:cicong>2.0.co;2
|
Lan, Z. W., 2023. Research Progress on the Chronostratigraphic Study of Nanhua System in South China. Sedimentary Geology and Tethyan Geology, 43(1): 180-187 (in Chinese with English abstract)
|
Lan, Z. W., Huyskens, M. H., Le Hir, G., et al., 2022. Massive Volcanism may Have Foreshortened the Marinoan Snowball Earth. Geophysical Research Letters, 49(6): e2021GL097156. https://doi.org/10.1029/2021gl097156
|
Lan, Z. W., Li, X. H., Zhang, Q. R., et al., 2015. Global Synchronous Initiation of the 2nd Episode of Sturtian Glaciation: SIMS Zircon U-Pb and O Isotope Evidence from the Jiangkou Group, South China. Precambrian Research, 267: 28-38. https://doi.org/10.1016/j.precamres.2015.06.002
|
Lang, X. G., Chen, J. T., Cui, H., et al., 2018b. Cyclic Cold Climate during the Nantuo Glaciation: Evidence from the Cryogenian Nantuo Formation in the Yangtze Block, South China. Precambrian Research, 310: 243-255. https://doi.org/10.1016/j.precamres.2018.03.004
|
Lang, X. G., Shen, B., Peng, Y. B., et al., 2018a. Transient Marine Euxinia at the End of the Terminal Cryogenian Glaciation. Nature Communications, 9: 3019. https://doi.org/10.1038/s41467-018-05423-x
|
Li, W. P., Li, H. L., Wang, Y., et al., 2022. Neoproterozoic Glaciations in Yecheng Area, Southwestern Margin of the Tarim Basin. Earth Science Frontiers, 29(3): 356-380 (in Chinese with English abstract).
|
Li, X. L., Zhang, X., Lin, C. M., et al., 2022. Overview of the Application and Prospect of Common Chemical Weathering Indices. Geological Journal of China Universities, 28(1): 51-63 (in Chinese with English abstract)
|
Li, Z. X., Evans, D. A. D., Halverson, G. P., 2013. Neoproterozoic Glaciations in a Revised Global Palaeogeography from the Breakup of Rodinia to the Assembly of Gondwanaland. Sedimentary Geology, 294: 219-232. https://doi.org/10.1016/j.sedgeo.2013.05.016
|
Lipp, A. G., Shorttle, O., Syvret, F., et al., 2020. Major Element Composition of Sediments in Terms of Weathering and Provenance: Implications for Crustal Recycling. Geochemistry, Geophysics, Geosystems, 21(6): e2019GC008758. https://doi.org/10.1029/2019gc008758
|
Liu, B., Xu, B., Meng, X. Y., et al., 2007. Study on the Chemical Index of Alteration of Neoproterozoic Strata in the Tarim Plate and Its Implications. Acta Petrologica Sinica, 23(7): 1664-1670 (in Chinese with English abstract).
|
Mills, B., Watson, A. J., Goldblatt, C., et al., 2011. Timing of Neoproterozoic Glaciations Linked to Transport-Limited Global Weathering. Nature Geoscience, 4: 861-864. https://doi.org/10.1038/ngeo1305
|
Nesbitt, H. W., 1979. Mobility and Fractionation of Rare Earth Elements during Weathering of a Granodiorite. Nature, 279: 206-210. https://doi.org/10.1038/279206a0
|
Nesbitt, H. W., Markovics, G., Price, R. C., 1980. Chemical Processes Affecting Alkalis and Alkaline Earths during Continental Weathering. Geochimica et Cosmochimica Acta, 44(11): 1659-1666. https://doi.org/10.1016/0016-7037(80)90218-5
|
Nesbitt, H. W., Young, G. M., 1982. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature, 299: 715-717. https://doi.org/10.1038/299715a0
|
Nesbitt, H. W., Young, G. M., 1984. Prediction of Some Weathering Trends of Plutonic and Volcanic Rocks Based on Thermodynamic and Kinetic Considerations. Geochimica et Cosmochimica Acta, 48(7): 1523-1534. https://doi.org/10.1016/0016-7037(84)90408-3
|
Nesbitt, H. W., Young, G. M., 1989. Formation and Diagenesis of Weathering Profiles. Journal of Geology, 97(2): 129-147. https://doi.org/10.1086/629290
|
Nesbitt, H. W., Young, G. M., McLennan, S. M., et al., 1996. Effects of Chemical Weathering and Sorting on the Petrogenesis of Siliciclastic Sediments, with Implications for Provenance Studies. Journal of Geology, 104(5): 525-542. https://doi.org/10.1086/629850
|
Och, L. M., Shields-Zhou, G. A., 2012. The Neoproterozoic Oxygenation Event: Environmental Perturbations and Biogeochemical Cycling. Earth-Science Reviews, 110(1-4): 26-57. https://doi.org/10.1016/j.earscirev.2011.09.004
|
Ohta, T., Arai, H., 2007. Statistical Empirical Index of Chemical Weathering in Igneous Rocks: A New Tool for Evaluating the Degree of Weathering. Chemical Geology, 240(3/4): 280-297. https://doi.org/10.1016/j.chemgeo.2007.02.017
|
Pierrehumbert, R. T., Abbot, D. S., Voigt, A., et al., 2011. Climate of the Neoproterozoic. Annual Review of Earth and Planetary Sciences, 39: 417-460. https://doi.org/10.1146/annurev-earth-040809-152447
|
Pogge von Strandmann, P. A. E., Desrochers, A., Murphy, M. J., et al., 2017. Global Climate Stabilisation by Chemical Weathering during the Hirnantian Glaciation. Geochemical Perspectives Letters, : 230-237. https://doi.org/10.7185/geochemlet.1726
|
Qi, L., Yu, W. C., Du, Y. S., et al., 2015. Paleoclimate Evolution of the Cryogenian Tiesi'ao FormationDatangpo Formation in Eastern Guizhou Province: Evidence from the Chemical Index of Alteration. Geological Science and Technology Information, 34(6): 47-57 (in Chinese with English abstract)
|
Qi, Y., Gu, S. Y., Zhao, F. Q., 2022. Redox Characteristics of Marine Environment of Nantuo Glaciation, Nanhua Basin. Acta Sedimentologica Sinica, 40(3): 715-729 (in Chinese with English abstract)
|
Rieu, R., Allen, P. A., Plotze, M., et al., 2007. Compositional and Mineralogical Variations in a Neoproterozoic Glacially Influenced Succession, Mirbat Area, South Oman: Implications for Paleoweathering Conditions. Precambrian Research, 154(3-4): 248-265. https://doi.org/10.1016/j.precamres.2007.01.003
|
Rooney, A. D., Macdonald, F. A., Strauss, J. V., et al., 2014. Re-Os Geochronology and Coupled Os-Sr Isotope Constraints on the Sturtian Snowball Earth. Proceedings of the National Academy of Sciences of the United States of America, 111(1): 51-56. https://doi.org/10.1073/pnas.1317266110
|
Rudnick, R. L., Gao, S., 2014. Composition of the Continental Crust. In: Holland, H. D., Turekian, K. K., eds., Treatise on Geochemistry (Second Edition), Elsevier, Oxford.
|
Shao, J. Q., Yang, S. Y., 2012. Does Chemical Index of Alteration (CIA) Reflect Silicate Weathering and Monsoonal Climate in the Changjiang River Basin? Chinese Science Bulletin, 57(10): 1178-1187. https://doi.org/10.1007/s11434-011-4954-5
|
Shen, H. J., Gu, S. Y., Zhao, S. F., et al., 2020. The Sedimentary Geochemical Records of Ocean Environment during the Nantuo (Marinoan) Glaciation in South China—Carbon and Oxygen Isotopes and Trace Element Compositions of Dolostone in Nantuo Formation, Nanhuan System, in Eastern Guizhou. Geological Review, 66(1): 214-228 (in Chinese with English abstract).
|
Shen, W. B., Zhu, X. K., Yan, B., et al., 2022. Secular Variation in Seawater Redox State during the Marinoan Snowball Earth Event and Implications for Eukaryotic Evolution. Geology, 50(11): 1239-1244. https://doi.org/10.1130/G50147.1
|
Shi, W., Mills, B. J. W., Li, C., et al., 2022. Decoupled Oxygenation of the Ediacaran Ocean and Atmosphere during the Rise of Early Animals. Earth and Planetary Science Letters, 591: 117619. https://doi.org/10.1016/j.epsl.2022.117619
|
Shields, G. A., 2007. A Normalised Seawater Strontium Isotope Curve: Possible Implications for Neoproterozoic-Cambrian Weathering Rates and the Further Oxygenation of the Earth. eEarth, 2(2): 35-42. https://doi.org/10.5194/ee-2-35-200710.5194/eed-2-69-2007
|
Song, H. Y., An, Z. H., Ye, Q., et al., 2023. Mid-Latitudinal Habitable Environment for Marine Eukaryotes during the Waning Stage of the Marinoan Snowball Glaciation. Nature Communications, 14: 1564. https://doi.org/10.1038/s41467-023-37172-x
|
Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell, Oxford.
|
Wang, J., Li, Z. X., 2003. History of Neoproterozoic Rift Basins in South China: Implications for Rodinia Break-up. Precambrian Research, 122(1-4): 141-158. https://doi.org/10.1016/S0301-9268(02)00209-7
|
Wang, P., Du, Y. S., Yu, W. C., et al., 2020. The Chemical Index of Alteration (CIA) as a Proxy for Climate Change during Glacial-Interglacial Transitions in Earth History. Earth-Science Reviews, 201: 103032. https://doi.org/10.1016/j.earscirev.2019.103032
|
Wang, Z. Q., Yin, C. Y., Gao, L. Z., et al., 2006. The Character of the Chemical Index of Alteration and Discussion of Subdivision and Correlation of the Nanhua System in Yichang Area. Geological Review, 52(5): 577-585 (in Chinese with English abstract)
|
Wedepohl, K. H., 1995. The Composition of the Continental Crust. Geochimica et Cosmochimica Acta, 59(7): 1217-1232. https://doi.org/10.1016/0016-7037(95)00038-2
|
Wei, G. Y., Wei, W., Wang, D., et al., 2020. Enhanced Chemical Weathering Triggered an Expansion of Euxinic Seawater in the Aftermath of the Sturtian Glaciation. Earth and Planetary Science Letters, 539: 116244. https://doi.org/10.1016/j.epsl.2020.116244
|
Wu, Z. Y., Gu, S. Y., 2019. Potassium Enrichment of Diamictite in Neoproterozoic Nantuo Glaciation in South China: An Example from the Cryogenian Nantuo Formation in Songtao, Guizhou Province. Journal of Guizhou University (Natural Sciences), 36(5): 43-49 (in Chinese with English abstract)
|
Xu, X. T., Shao, L. Y., 2018. Limiting Factors in Utilization of Chemical Index of Alteration of Mudstones to Quantify the Degree of Weathering in Provenance. Journal of Palaeogeography (Chinese Edition), 20(3): 515-522 (in Chinese with English abstract)
|
Ye, Q., Tong, J. N., Xiao, S. H., et al., 2015. The Survival of Benthic Macroscopic Phototrophs on a Neoproterozoic Snowball Earth. Geology, 43(6): 507-510. https://doi.org/10.1130/G36640.1
|
Yu, W. C., Algeo, T. J., Zhou, Q., et al., 2020. Cryogenian Cap Carbonate Models: A Review and Critical Assessment. Palaeogeography, Palaeoclimatology, Palaeoecology, 552: 109727. https://doi.org/10.1016/j.palaeo.2020.109727
|
Zhang, Q. R., Chu, X. L., Feng, L. J., 2011. Neoproterozoic Glacial Records in the Yangtze Region, China. Geological Society, London, Memoirs, 36: 357-366. https://doi.org/10.1144/M36.3
|
Zhang, S. H., Evans, D. A. D., Li, H. Y., et al., 2013. Paleomagnetism of the Late Cryogenian Nantuo Formation and Paleogeographic Implications for the South China Block. Journal of Asian Earth Sciences, 72: 164-177. https://doi.org/10.1016/j.jseaes.2012.11.022
|
Zhao, X. M., Liu, S. D., Zhang, Q. X., et al., 2011. Geochemical Characters of the Nanhua System in Changyang, Western Hubei Province and Its Implication for Climate and Sequence Correlation. Acta Geologica Sinica, 85(4): 576-585 (in Chinese with English abstract)
|
Zhao, Y. Y., Zheng, Y. F., 2011. Record and Time of Neoproterozoic Glaciations on Earth. Acta Petrologica Sinica, 27(2): 545-565 (in Chinese with English abstract)
|
Zhou, C. M., Huyskens, M. H., Lang, X. G., et al., 2019. Calibrating the Terminations of Cryogenian Global Glaciations. Geology, 47(3): 251-254. https://doi.org/10.1130/G45719.1
|
Zhu, M. Y., Wang, H. F., 2011. Neoproterozoic Glaciogenic Diamictites of the Tarim Block, NW China. Geological Society, London, Memoirs, 36: 367-378. https://doi.org/10.1144/M36.33
|
蔡雄飞, 罗中杰, 叶琴, 2017. 湖南四都坪南沱组沉积特征与古气候变化耦合关系. 华东地质, 38(2): 91-98.
|
冯连君, 储雪蕾, 张启锐, 等, 2003. 化学蚀变指数(CIA)及其在新元古代碎屑岩中的应用. 地学前缘, 10(4): 539-544.
|
冯连君, 储雪蕾, 张启锐, 等, 2004. 湘西北南华系渫水河组寒冷气候成因的新证据. 科学通报, 49(12): 1172-1178.
|
傅寒晶, 简星, 梁杭海, 2021. 硅酸盐化学风化强度评估的沉积物指标与方法研究进展. 古地理学报, 23(6): 1192-1209.
|
兰中伍, 2023. 华南南华系年代地层学研究进展. 沉积与特提斯地质, 43(1): 180-187.
|
李王鹏, 李慧莉, 王毅, 等, 2022. 塔里木盆地西南缘叶城地区新元古代冰期事件. 地学前缘, 29(3): 356-380.
|
李绪龙, 张霞, 林春明, 等, 2022. 常用化学风化指标综述: 应用与展望. 高校地质学报, 28(1): 51-63.
|
刘兵, 徐备, 孟祥英, 等, 2007. 塔里木板块新元古代地层化学蚀变指数研究及其意义. 岩石学报, 23(7): 1664-1670.
|
齐靓, 余文超, 杜远生, 等, 2015. 黔东南华纪铁丝坳期‒大塘坡期古气候的演变: 来自CIA的证据. 地质科技情报, 34(6): 47-57.
|
祁钰, 顾尚义, 赵凤其, 2022. 南华盆地南沱冰期海水氧化还原特征. 沉积学报, 40(3): 715-729.
|
沈洪娟, 顾尚义, 赵思凡, 等, 2020. 华南南华纪南沱冰期海洋环境的沉积地球化学记录: 来自黔东部南华系南沱组白云岩碳氧同位素和微量元素的证据. 地质论评, 66(1): 214-228.
|
王自强, 尹崇玉, 高林志, 等, 2006. 宜昌三斗坪地区南华系化学蚀变指数特征及南华系划分、对比的讨论. 地质论评, 52(5): 577-585.
|
吴忠银, 顾尚义, 2019. 华南新元古代南沱杂砾岩中富钾现象的研究: 以贵州松桃南沱组为例. 贵州大学学报(自然科学版), 36(5): 43-49.
|
徐小涛, 邵龙义, 2018. 利用泥质岩化学蚀变指数分析物源区风化程度时的限制因素. 古地理学报, 20(3): 515-522.
|
赵小明, 刘圣德, 张权绪, 等, 2011. 鄂西长阳南华系地球化学特征的气候指示意义及地层对比. 地质学报, 85(4): 576-585.
|
赵彦彦, 郑永飞, 2011. 全球新元古代冰期的记录和时限. 岩石学报, 27(2): 545-565.
|
![]() |
![]() |