• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 3
    Mar.  2025
    Turn off MathJax
    Article Contents
    Chen Xinyang, Li Biao, Li Chao, 2025. Chemical Weathering during the Neoproterozoic Snowball Earth Events. Earth Science, 50(3): 1048-1065. doi: 10.3799/dqkx.2025.006
    Citation: Chen Xinyang, Li Biao, Li Chao, 2025. Chemical Weathering during the Neoproterozoic Snowball Earth Events. Earth Science, 50(3): 1048-1065. doi: 10.3799/dqkx.2025.006

    Chemical Weathering during the Neoproterozoic Snowball Earth Events

    doi: 10.3799/dqkx.2025.006
    • Received Date: 2024-12-04
      Available Online: 2025-03-19
    • Publish Date: 2025-03-25
    • Two global-scale Snowball Earth events occurred during the Cryogenian period of the Neoproterozoic era (ca. 720‒635 Ma), representing a crucial transition period for the Earth's biological systems and environmental evolution. An increasing amount of evidence indicates that there are spatio-temporal fluctuations in the climate and marine redox state during the Snowball glaciation. However, the driving mechanisms of the carbon cycle-land-ocean system interaction and glacial climate fluctuations during this period remain largely unclear. Continental weathering is a key process linking snowball development, ocean chemistry, and biological evolution, but existing research has been unable to effectively characterize continental weathering during the Snowball period. This paper summarizes the current status of proxies for chemical weathering intensity during the Cryogenian period, and statistically analyzes the major-element data of 867 clastic rock samples from 28 Cryogenian sections (including drill cores) worldwide. Using the index of ln(Al2O3/Na2O), the evolutionary trend of the global average chemical weathering intensity from the Late Tonian period to the Early Ediacaran period is quantitatively reconstructed. Three fluctuations in chemical weathering intensity are discovered, indicating that the onset and termination of glaciation are closely related to chemical weathering. In addition, the average weathering intensity during the Marinoan glaciation is significantly higher than that during the Sturtian glaciation, possibly suggesting the existence of a certain degree of hydrological circulation during the Marinoan glaciation. Future research can further apply the comprehensive application of multiple proxies to deepen the understanding of the chemical weathering mechanisms during the Cryogenian period, and provide more in-depth perspectives and evidence to support the exploration of global environmental evolution.

       

    • loading
    • Algeo, T. J., Hong, H. L., Wang, C. W., 2025. The Chemical Index of Alteration (CIA) and Interpretation of ACNK Diagrams. Chemical Geology, 671: 122474. https://doi.org/10.1016/j.chemgeo.2024.122474
      Allen, P. A., Etienne, J. L., 2008. Sedimentary Challenge to Snowball Earth. Nature Geoscience, 1: 817-825. https://doi.org/10.1038/ngeo355
      Bahlburg, H., Dobrzinski, N., 2011. A Review of the Chemical Index of Alteration (CIA) and Its Application to the Study of Neoproterozoic Glacial Deposits and Climate Transitions. Geological Society, London, Memoirs, 36: 81-92. https://doi.org/10.1144/m36.6
      Benn, D. I., Le Hir, G., Bao, H. M., et al., 2015. Orbitally Forced Ice Sheet Fluctuations during the Marinoan Snowball Earth Glaciation. Nature Geoscience, 8: 704-707. https://doi.org/10.1038/ngeo2502
      Berner, R. A., Lasaga, A. C., Garrels, R. M., 1983. The Carbonate-Silicate Geochemical Cycle and Its Effect on Atmospheric Carbon Dioxide over the Past 100 Million Years. American Journal of Science, 283(7): 641-683. https://doi.org/10.2475/ajs.283.7.641
      Busfield, M. E., Le Heron, D. P., 2016. A Neoproterozoic Ice Advance Sequence, Sperry Wash, California. Sedimentology, 63(2): 307-330. https://doi.org/10.1111/sed.12210
      Cai, X. F., Luo, Z. J., Ye, Q., 2017. Sedimentary Characteristics of the Nantuo Formation in Siduping, Hunan and Its Coupling Relationship with Paleoclimate. East China Geology, 38(2): 91-98 (in Chinese with English abstract)
      Cheng, M., Zhang, Z. H., Algeo, T. J., et al., 2021. Hydrological Controls on Marine Chemistry in the Cryogenian Nanhua Basin (South China). Earth-Science Reviews, 218: 103678. https://doi.org/10.1016/j.earscirev.2021.103678
      Cox, G. M., Halverson, G. P., Stevenson, R. K., et al., 2016. Continental Flood Basalt Weathering as a Trigger for Neoproterozoic Snowball Earth. Earth and Planetary Science Letters, 446: 89-99. https://doi.org/10.1016/j.epsl.2016.04.016
      Cox, R., Lowe, D. R., Cullers, R. L., 1995. The Influence of Sediment Recycling and Basement Composition on Evolution of Mudrock Chemistry in the Southwestern United States. Geochimica et Cosmochimica Acta, 59(14): 2919-2940. https://doi.org/10.1016/0016-7037(95)00185-9
      Ding, H. F., Ma, D. S., Yao, C. Y., et al., 2009. Sedimentary Environment of Ediacaran Glacigenic Diamictite in Guozigou of Xinjiang, China. Chinese Science Bulletin, 54(18): 3283-3294. https://doi.org/10.1007/s11434-009-0443-5
      Dodd, M. S., Shi, W., Li, C., et al., 2023. Uncovering the Ediacaran Phosphorus Cycle. Nature, 618: 974-980. https://doi.org/10.1038/s41586-023-06077-6
      Fairchild, I. J., Fleming, E. J., Bao, H. M., et al., 2016. Continental Carbonate Facies of a Neoproterozoic Panglaciation, North-East Svalbard. Sedimentology, 63(2): 443-497. https://doi.org/10.1111/sed.12252
      Feng, L. J., Chu, X. L., Zhang, Q. R., et al., 2003. CIA (Chemical Index of Alteration)and Its Applications in the Neoproterozoic Clastic Rocks. Earth Science Frontiers, 10(4): 539-544 (in Chinese with English abstract)
      Feng, L. J., Chu, X. L., Zhang, Q. R., et al., 2004. New Evidence for a Cold Climate during the Deposition of the Xieshuihe Formation in Northeast Hunan. Science Bulletin, 49(12): 1172-1178 (in Chinese).
      Fleming, E. J., Benn, D. I., Stevenson, C. T. E., et al., 2016. Glacitectonism, Subglacial and Glacilacustrine Processes during a Neoproterozoic Panglaciation, North-East Svalbard. Sedimentology, 63(2): 411-442. https://doi.org/10.1111/sed.12251
      Fu, H. J., Jian, X., Liang, H. H., 2021. Research Progress of Sediment Indicators and Methods for Evaluation of Silicate Chemical Weathering Intensity. Journal of Palaeogeography (Chinese Edition), 23(6): 1192-1209 (in Chinese with English abstract)
      Fu, H. J., Jian, X., Pan, H. Q., 2023. Bias in Sediment Chemical Weathering Intensity Evaluation: A Numerical Simulation Study. Earth-Science Reviews, 246: 104574. https://doi.org/10.1016/j.earscirev.2023.104574
      Gan, T., Tian, M., Wang, X. K., et al., 2024. Lithium Isotope Evidence for a Plumeworld Ocean in the Aftermath of the Marinoan Snowball Earth. Proceedings of the National Academy of Sciences, 121(46): e2407419121. https://doi.org/10.1073/pnas.2407419121
      Gernon, T. M., Hincks, T. K., Tyrrell, T., et al., 2016. Snowball Earth Ocean Chemistry Driven by Extensive Ridge Volcanism during Rodinia Breakup. Nature Geoscience, 9: 242-248. https://doi.org/10.1038/ngeo2632
      Goddéris, Y., Le Hir, G., Macouin, M., et al., 2017. Paleogeographic Forcing of the Strontium Isotopic Cycle in the Neoproterozoic. Gondwana Research, 42: 151-162. https://doi.org/10.1016/j.gr.2016.09.013
      Halverson, G. P., Dudás, F. Ö., Maloof, A. C., et al., 2007. Evolution of the 87Sr/86Sr Composition of Neoproterozoic Seawater. Palaeogeography, Palaeoclimatology, Palaeoecology, 256(3-4): 103-129. https://doi.org/10.1016/j.palaeo.2007.02.028
      Halverson, G. P., Wade, B. P., Hurtgen, M. T., et al., 2010. Neoproterozoic Chemostratigraphy. Precambrian Research, 182(4): 337-350. https://doi.org/10.1016/j.precamres.2010.04.007
      Hoffman, P. F., 2016. Cryoconite Pans on Snowball Earth: Supraglacial Oases for Cryogenian Eukaryotes? Geobiology, 14(6): 531-542. https://doi.org/10.1111/gbi.12191
      Hoffman, P. F., Abbot, D. S., Ashkenazy, Y., et al., 2017. Snowball Earth Climate Dynamics and Cryogenian Geology-Geobiology. Science Advances, 3(11): e1600983. https://doi.org/10.1126/sciadv.1600983
      Hoffman, P. F., Kaufman, A. J., Halverson, G. P., et al., 1998. A Neoproterozoic Snowball Earth. The American Journal of Case Reports, 281(5381): 1342-1346. https://doi.org/10.1126/science.281.5381.1342
      Hoffman, P. F., Li, Z. X., 2009. A Palaeogeographic Context for Neoproterozoic Glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, 277(3-4): 158-172. https://doi.org/10.1016/j.palaeo.2009.03.013
      Hood, A. V. S., Penman, D. E., Lechte, M. A., et al., 2022. Neoproterozoic Syn-Glacial Carbonate Precipitation and Implications for a Snowball Earth. Geobiology, 20(2): 175-193. https://doi.org/10.1111/gbi.12470
      Hu, J., Li, C., Tong, J. N., et al., 2020. Glacial Origin of the Cryogenian Nantuo Formation in Eastern Shennongjia Area (South China): Implications for Macroalgal Survival. Precambrian Research, 351: 105969. https://doi.org/10.1016/j.precamres.2020.105969
      Hu, J., Wang, J. S., Chen, H. R., et al., 2012. Multiple Cycles of Glacier Advance and Retreat during the Nantuo (Marinoan) Glacial Termination in the Three Gorges Area. Frontiers of Earth Science, 6(1): 101-108. https://doi.org/10.1007/s11707-011-0179-9
      Huang, K. J., Teng, F. Z., Shen, B., et al., 2016. Episode of Intense Chemical Weathering during the Termination of the 635 Ma Marinoan Glaciation. Proc Natl Acad Sci USA, 113(52): 14904-14909. https://doi.org/10.1073/pnas.1607712113
      Jacobsen, S. B., Kaufman, A. J., 1999. The Sr, C and O Isotopic Evolution of Neoproterozoic Seawater. Chemical Geology, 161(1): 37-57. https://doi.org/10.1016/S0009-2541(99)00080-7
      Kennedy, M. J., Christie-Blick, N., Prave, A. R., 2001. Carbon Isotopic Composition of Neoproterozoic Glacial Carbonates as a Test of Paleoceanographic Models for Snowball Earth Phenomena. Geology, 29(12): 1135-1138. https://doi.org/10.1130/0091-7613(2001)0291135:cicong>2.0.co;2 doi: 10.1130/0091-7613(2001)0291135:cicong>2.0.co;2
      Lan, Z. W., 2023. Research Progress on the Chronostratigraphic Study of Nanhua System in South China. Sedimentary Geology and Tethyan Geology, 43(1): 180-187 (in Chinese with English abstract)
      Lan, Z. W., Huyskens, M. H., Le Hir, G., et al., 2022. Massive Volcanism may Have Foreshortened the Marinoan Snowball Earth. Geophysical Research Letters, 49(6): e2021GL097156. https://doi.org/10.1029/2021gl097156
      Lan, Z. W., Li, X. H., Zhang, Q. R., et al., 2015. Global Synchronous Initiation of the 2nd Episode of Sturtian Glaciation: SIMS Zircon U-Pb and O Isotope Evidence from the Jiangkou Group, South China. Precambrian Research, 267: 28-38. https://doi.org/10.1016/j.precamres.2015.06.002
      Lang, X. G., Chen, J. T., Cui, H., et al., 2018b. Cyclic Cold Climate during the Nantuo Glaciation: Evidence from the Cryogenian Nantuo Formation in the Yangtze Block, South China. Precambrian Research, 310: 243-255. https://doi.org/10.1016/j.precamres.2018.03.004
      Lang, X. G., Shen, B., Peng, Y. B., et al., 2018a. Transient Marine Euxinia at the End of the Terminal Cryogenian Glaciation. Nature Communications, 9: 3019. https://doi.org/10.1038/s41467-018-05423-x
      Li, W. P., Li, H. L., Wang, Y., et al., 2022. Neoproterozoic Glaciations in Yecheng Area, Southwestern Margin of the Tarim Basin. Earth Science Frontiers, 29(3): 356-380 (in Chinese with English abstract).
      Li, X. L., Zhang, X., Lin, C. M., et al., 2022. Overview of the Application and Prospect of Common Chemical Weathering Indices. Geological Journal of China Universities, 28(1): 51-63 (in Chinese with English abstract)
      Li, Z. X., Evans, D. A. D., Halverson, G. P., 2013. Neoproterozoic Glaciations in a Revised Global Palaeogeography from the Breakup of Rodinia to the Assembly of Gondwanaland. Sedimentary Geology, 294: 219-232. https://doi.org/10.1016/j.sedgeo.2013.05.016
      Lipp, A. G., Shorttle, O., Syvret, F., et al., 2020. Major Element Composition of Sediments in Terms of Weathering and Provenance: Implications for Crustal Recycling. Geochemistry, Geophysics, Geosystems, 21(6): e2019GC008758. https://doi.org/10.1029/2019gc008758
      Liu, B., Xu, B., Meng, X. Y., et al., 2007. Study on the Chemical Index of Alteration of Neoproterozoic Strata in the Tarim Plate and Its Implications. Acta Petrologica Sinica, 23(7): 1664-1670 (in Chinese with English abstract).
      Mills, B., Watson, A. J., Goldblatt, C., et al., 2011. Timing of Neoproterozoic Glaciations Linked to Transport-Limited Global Weathering. Nature Geoscience, 4: 861-864. https://doi.org/10.1038/ngeo1305
      Nesbitt, H. W., 1979. Mobility and Fractionation of Rare Earth Elements during Weathering of a Granodiorite. Nature, 279: 206-210. https://doi.org/10.1038/279206a0
      Nesbitt, H. W., Markovics, G., Price, R. C., 1980. Chemical Processes Affecting Alkalis and Alkaline Earths during Continental Weathering. Geochimica et Cosmochimica Acta, 44(11): 1659-1666. https://doi.org/10.1016/0016-7037(80)90218-5
      Nesbitt, H. W., Young, G. M., 1982. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature, 299: 715-717. https://doi.org/10.1038/299715a0
      Nesbitt, H. W., Young, G. M., 1984. Prediction of Some Weathering Trends of Plutonic and Volcanic Rocks Based on Thermodynamic and Kinetic Considerations. Geochimica et Cosmochimica Acta, 48(7): 1523-1534. https://doi.org/10.1016/0016-7037(84)90408-3
      Nesbitt, H. W., Young, G. M., 1989. Formation and Diagenesis of Weathering Profiles. Journal of Geology, 97(2): 129-147. https://doi.org/10.1086/629290
      Nesbitt, H. W., Young, G. M., McLennan, S. M., et al., 1996. Effects of Chemical Weathering and Sorting on the Petrogenesis of Siliciclastic Sediments, with Implications for Provenance Studies. Journal of Geology, 104(5): 525-542. https://doi.org/10.1086/629850
      Och, L. M., Shields-Zhou, G. A., 2012. The Neoproterozoic Oxygenation Event: Environmental Perturbations and Biogeochemical Cycling. Earth-Science Reviews, 110(1-4): 26-57. https://doi.org/10.1016/j.earscirev.2011.09.004
      Ohta, T., Arai, H., 2007. Statistical Empirical Index of Chemical Weathering in Igneous Rocks: A New Tool for Evaluating the Degree of Weathering. Chemical Geology, 240(3/4): 280-297. https://doi.org/10.1016/j.chemgeo.2007.02.017
      Pierrehumbert, R. T., Abbot, D. S., Voigt, A., et al., 2011. Climate of the Neoproterozoic. Annual Review of Earth and Planetary Sciences, 39: 417-460. https://doi.org/10.1146/annurev-earth-040809-152447
      Pogge von Strandmann, P. A. E., Desrochers, A., Murphy, M. J., et al., 2017. Global Climate Stabilisation by Chemical Weathering during the Hirnantian Glaciation. Geochemical Perspectives Letters, : 230-237. https://doi.org/10.7185/geochemlet.1726
      Qi, L., Yu, W. C., Du, Y. S., et al., 2015. Paleoclimate Evolution of the Cryogenian Tiesi'ao FormationDatangpo Formation in Eastern Guizhou Province: Evidence from the Chemical Index of Alteration. Geological Science and Technology Information, 34(6): 47-57 (in Chinese with English abstract)
      Qi, Y., Gu, S. Y., Zhao, F. Q., 2022. Redox Characteristics of Marine Environment of Nantuo Glaciation, Nanhua Basin. Acta Sedimentologica Sinica, 40(3): 715-729 (in Chinese with English abstract)
      Rieu, R., Allen, P. A., Plotze, M., et al., 2007. Compositional and Mineralogical Variations in a Neoproterozoic Glacially Influenced Succession, Mirbat Area, South Oman: Implications for Paleoweathering Conditions. Precambrian Research, 154(3-4): 248-265. https://doi.org/10.1016/j.precamres.2007.01.003
      Rooney, A. D., Macdonald, F. A., Strauss, J. V., et al., 2014. Re-Os Geochronology and Coupled Os-Sr Isotope Constraints on the Sturtian Snowball Earth. Proceedings of the National Academy of Sciences of the United States of America, 111(1): 51-56. https://doi.org/10.1073/pnas.1317266110
      Rudnick, R. L., Gao, S., 2014. Composition of the Continental Crust. In: Holland, H. D., Turekian, K. K., eds., Treatise on Geochemistry (Second Edition), Elsevier, Oxford. https://doi.org/10.1016/b978-0-08-095975-7.00301-6
      Shao, J. Q., Yang, S. Y., 2012. Does Chemical Index of Alteration (CIA) Reflect Silicate Weathering and Monsoonal Climate in the Changjiang River Basin? Chinese Science Bulletin, 57(10): 1178-1187. https://doi.org/10.1007/s11434-011-4954-5
      Shen, H. J., Gu, S. Y., Zhao, S. F., et al., 2020. The Sedimentary Geochemical Records of Ocean Environment during the Nantuo (Marinoan) Glaciation in South China—Carbon and Oxygen Isotopes and Trace Element Compositions of Dolostone in Nantuo Formation, Nanhuan System, in Eastern Guizhou. Geological Review, 66(1): 214-228 (in Chinese with English abstract).
      Shen, W. B., Zhu, X. K., Yan, B., et al., 2022. Secular Variation in Seawater Redox State during the Marinoan Snowball Earth Event and Implications for Eukaryotic Evolution. Geology, 50(11): 1239-1244. https://doi.org/10.1130/G50147.1
      Shi, W., Mills, B. J. W., Li, C., et al., 2022. Decoupled Oxygenation of the Ediacaran Ocean and Atmosphere during the Rise of Early Animals. Earth and Planetary Science Letters, 591: 117619. https://doi.org/10.1016/j.epsl.2022.117619
      Shields, G. A., 2007. A Normalised Seawater Strontium Isotope Curve: Possible Implications for Neoproterozoic-Cambrian Weathering Rates and the Further Oxygenation of the Earth. eEarth, 2(2): 35-42. https://doi.org/10.5194/ee-2-35-200710.5194/eed-2-69-2007
      Song, H. Y., An, Z. H., Ye, Q., et al., 2023. Mid-Latitudinal Habitable Environment for Marine Eukaryotes during the Waning Stage of the Marinoan Snowball Glaciation. Nature Communications, 14: 1564. https://doi.org/10.1038/s41467-023-37172-x
      Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell, Oxford.
      Wang, J., Li, Z. X., 2003. History of Neoproterozoic Rift Basins in South China: Implications for Rodinia Break-up. Precambrian Research, 122(1-4): 141-158. https://doi.org/10.1016/S0301-9268(02)00209-7
      Wang, P., Du, Y. S., Yu, W. C., et al., 2020. The Chemical Index of Alteration (CIA) as a Proxy for Climate Change during Glacial-Interglacial Transitions in Earth History. Earth-Science Reviews, 201: 103032. https://doi.org/10.1016/j.earscirev.2019.103032
      Wang, Z. Q., Yin, C. Y., Gao, L. Z., et al., 2006. The Character of the Chemical Index of Alteration and Discussion of Subdivision and Correlation of the Nanhua System in Yichang Area. Geological Review, 52(5): 577-585 (in Chinese with English abstract)
      Wedepohl, K. H., 1995. The Composition of the Continental Crust. Geochimica et Cosmochimica Acta, 59(7): 1217-1232. https://doi.org/10.1016/0016-7037(95)00038-2
      Wei, G. Y., Wei, W., Wang, D., et al., 2020. Enhanced Chemical Weathering Triggered an Expansion of Euxinic Seawater in the Aftermath of the Sturtian Glaciation. Earth and Planetary Science Letters, 539: 116244. https://doi.org/10.1016/j.epsl.2020.116244
      Wu, Z. Y., Gu, S. Y., 2019. Potassium Enrichment of Diamictite in Neoproterozoic Nantuo Glaciation in South China: An Example from the Cryogenian Nantuo Formation in Songtao, Guizhou Province. Journal of Guizhou University (Natural Sciences), 36(5): 43-49 (in Chinese with English abstract)
      Xu, X. T., Shao, L. Y., 2018. Limiting Factors in Utilization of Chemical Index of Alteration of Mudstones to Quantify the Degree of Weathering in Provenance. Journal of Palaeogeography (Chinese Edition), 20(3): 515-522 (in Chinese with English abstract)
      Ye, Q., Tong, J. N., Xiao, S. H., et al., 2015. The Survival of Benthic Macroscopic Phototrophs on a Neoproterozoic Snowball Earth. Geology, 43(6): 507-510. https://doi.org/10.1130/G36640.1
      Yu, W. C., Algeo, T. J., Zhou, Q., et al., 2020. Cryogenian Cap Carbonate Models: A Review and Critical Assessment. Palaeogeography, Palaeoclimatology, Palaeoecology, 552: 109727. https://doi.org/10.1016/j.palaeo.2020.109727
      Zhang, Q. R., Chu, X. L., Feng, L. J., 2011. Neoproterozoic Glacial Records in the Yangtze Region, China. Geological Society, London, Memoirs, 36: 357-366. https://doi.org/10.1144/M36.3
      Zhang, S. H., Evans, D. A. D., Li, H. Y., et al., 2013. Paleomagnetism of the Late Cryogenian Nantuo Formation and Paleogeographic Implications for the South China Block. Journal of Asian Earth Sciences, 72: 164-177. https://doi.org/10.1016/j.jseaes.2012.11.022
      Zhao, X. M., Liu, S. D., Zhang, Q. X., et al., 2011. Geochemical Characters of the Nanhua System in Changyang, Western Hubei Province and Its Implication for Climate and Sequence Correlation. Acta Geologica Sinica, 85(4): 576-585 (in Chinese with English abstract)
      Zhao, Y. Y., Zheng, Y. F., 2011. Record and Time of Neoproterozoic Glaciations on Earth. Acta Petrologica Sinica, 27(2): 545-565 (in Chinese with English abstract)
      Zhou, C. M., Huyskens, M. H., Lang, X. G., et al., 2019. Calibrating the Terminations of Cryogenian Global Glaciations. Geology, 47(3): 251-254. https://doi.org/10.1130/G45719.1
      Zhu, M. Y., Wang, H. F., 2011. Neoproterozoic Glaciogenic Diamictites of the Tarim Block, NW China. Geological Society, London, Memoirs, 36: 367-378. https://doi.org/10.1144/M36.33
      蔡雄飞, 罗中杰, 叶琴, 2017. 湖南四都坪南沱组沉积特征与古气候变化耦合关系. 华东地质, 38(2): 91-98.
      冯连君, 储雪蕾, 张启锐, 等, 2003. 化学蚀变指数(CIA)及其在新元古代碎屑岩中的应用. 地学前缘, 10(4): 539-544.
      冯连君, 储雪蕾, 张启锐, 等, 2004. 湘西北南华系渫水河组寒冷气候成因的新证据. 科学通报, 49(12): 1172-1178.
      傅寒晶, 简星, 梁杭海, 2021. 硅酸盐化学风化强度评估的沉积物指标与方法研究进展. 古地理学报, 23(6): 1192-1209.
      兰中伍, 2023. 华南南华系年代地层学研究进展. 沉积与特提斯地质, 43(1): 180-187.
      李王鹏, 李慧莉, 王毅, 等, 2022. 塔里木盆地西南缘叶城地区新元古代冰期事件. 地学前缘, 29(3): 356-380.
      李绪龙, 张霞, 林春明, 等, 2022. 常用化学风化指标综述: 应用与展望. 高校地质学报, 28(1): 51-63.
      刘兵, 徐备, 孟祥英, 等, 2007. 塔里木板块新元古代地层化学蚀变指数研究及其意义. 岩石学报, 23(7): 1664-1670.
      齐靓, 余文超, 杜远生, 等, 2015. 黔东南华纪铁丝坳期‒大塘坡期古气候的演变: 来自CIA的证据. 地质科技情报, 34(6): 47-57.
      祁钰, 顾尚义, 赵凤其, 2022. 南华盆地南沱冰期海水氧化还原特征. 沉积学报, 40(3): 715-729.
      沈洪娟, 顾尚义, 赵思凡, 等, 2020. 华南南华纪南沱冰期海洋环境的沉积地球化学记录: 来自黔东部南华系南沱组白云岩碳氧同位素和微量元素的证据. 地质论评, 66(1): 214-228.
      王自强, 尹崇玉, 高林志, 等, 2006. 宜昌三斗坪地区南华系化学蚀变指数特征及南华系划分、对比的讨论. 地质论评, 52(5): 577-585.
      吴忠银, 顾尚义, 2019. 华南新元古代南沱杂砾岩中富钾现象的研究: 以贵州松桃南沱组为例. 贵州大学学报(自然科学版), 36(5): 43-49.
      徐小涛, 邵龙义, 2018. 利用泥质岩化学蚀变指数分析物源区风化程度时的限制因素. 古地理学报, 20(3): 515-522.
      赵小明, 刘圣德, 张权绪, 等, 2011. 鄂西长阳南华系地球化学特征的气候指示意义及地层对比. 地质学报, 85(4): 576-585.
      赵彦彦, 郑永飞, 2011. 全球新元古代冰期的记录和时限. 岩石学报, 27(2): 545-565.
    • dqkxzx-50-3-1048_附表.xlsx
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(1)

      Article views (176) PDF downloads(57) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return