• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 11
    Nov.  2025
    Turn off MathJax
    Article Contents
    Li Haidong, Zhong Fujun, Liu Wenquan, Pan Jiayong, Tian Shihong, Cao Xu, Zheng Guodong, 2025. Petrogeochemistry, Apatite U-Pb Geochronology of Diabase, and Its Relationship with Uranium Mineralization in Xiazhuang Uranium Ore Field, North Guangdong. Earth Science, 50(11): 4405-4423. doi: 10.3799/dqkx.2025.089
    Citation: Li Haidong, Zhong Fujun, Liu Wenquan, Pan Jiayong, Tian Shihong, Cao Xu, Zheng Guodong, 2025. Petrogeochemistry, Apatite U-Pb Geochronology of Diabase, and Its Relationship with Uranium Mineralization in Xiazhuang Uranium Ore Field, North Guangdong. Earth Science, 50(11): 4405-4423. doi: 10.3799/dqkx.2025.089

    Petrogeochemistry, Apatite U-Pb Geochronology of Diabase, and Its Relationship with Uranium Mineralization in Xiazhuang Uranium Ore Field, North Guangdong

    doi: 10.3799/dqkx.2025.089
    • Received Date: 2023-12-27
    • Publish Date: 2025-11-25
    • The Xiazhuang uranium ore field in North Guangdong is characterized by five sets of approximately equidistant NWW-trending diabase dikes, which are closely related to uranium mineralization. To determine the genesis of diabase and its relationship with uranium mineralization. This study systematically investigates the diagenetic age, genesis of diabase, and its controlling mechanisms on uranium mineralization through geochemical analysis of diabase, apatite U-Pb geochronology, and H-O isotopic analysis of ore-forming quartz, combined with regional tectonic background. Results indicate that: (1) The diabase was formed during two magmatic events (200-180 Ma and 150-140 Ma), corresponding to the Early Jurassic and Late Jurassic, respectively. (2) The diabase is enriched in large-ion lithophile elements (LILEs) and highly incompatible elements. The chondrite-normalized rare earth element (REE) patterns exhibit right-leaning trends and no significant Eu or Ce anomalies, indicating an intraplate basalt affinity derived from partial mantle melting with metasomatism by subduction-related fluids. (3) The early-stage diabase (200-180 Ma) served as favorable host rocks for uranium mineralization. The deep-seated faults associated with diabase emplacement provided pathways for ore-forming fluids, and the intersections between faults and diabase facilitated the formation of vein-type uranium deposits with crust-mantle hybrid fluids. The late-stage diabase (150-140 Ma) not only inherited the role of the early-stage diabase but also contributed mantle-derived fluids and mineralizing agents (ΣCO₂) during the 138-122 Ma uranium mineralization stage, promoting the formation of fractured alteration-type uranium deposits dominated by mantle-derived fluids.

       

    • loading
    • Bonnetti, C., Liu, X. D., Mercadier, J., et al., 2018. The Genesis of Granite-Related Hydrothermal Uranium Deposits in the Xiazhuang and Zhuguang Ore Fields, North Guangdong Province, SE China: Insights from Mineralogical, Trace Elements and U-Pb Isotopes Signatures of the U Mineralisation. Ore Geology Reviews, 92: 588-612. https://doi.org/10.1016/j.oregeorev.2017.12.010
      Chen, C. M., Zhou, Y., Feng, Z. H., et al., 2024. Identification of Neoproterozoic Gabbro from Diancangshan in West Yunnan and Its Geotectonic Implication. Earth Science, 49(12): 4434-4449 (in Chinese with English abstract).
      Cochrane, R., Spikings, R. A., Chew, D., et al., 2014. High Temperature (> 350 ℃) Thermochronology and Mechanisms of Pb Loss in Apatite. Geochimica et Cosmochimica Acta, 127: 39-56. https://doi.org/10.1016/j.gca.2013.11.028
      Deng, P., Shen, W. Z., Ling, H. F., et al., 2003. Uranium Mineralization Related to Mantle Fluid: A Case Study of the Xianshi Deposit in the Xiazhuang Uranium Orefield. Geochimica, 32(6): 520-528 (in Chinese with English abstract).
      He, D. B., 2017. Comparative Study of Different Types of Uranium Deposits in the Xiazhuang Ore Field, North Guangdong, China (Dissertation). Beijing Research Institute of Uranium Geology, Beijing (in Chinese with English abstract).
      Hu, R. Z., Li, C. Y., Ni, S. J., et al., 1993. Research on ΣCO2 Source in Ore-Forming Hydrothermal Solution of Granite-Type Uranium Deposit, South China. Science in China (Series B), 23(2): 189-196 (in Chinese).
      Hughes, J. M., Rakovan, J., 2002. The Crystal Structure of Apatite, Ca5(PO4)3(F, OH, Cl). Reviews in Mineralogy and Geochemistry, 48(1): 1-12. https://doi.org/10.2138/rmg.2002.48.1
      La Flèche, M. R., Camiré, G., Jenner, G. A., 1998. Geochemistry of Post-Acadian, Carboniferous Continental Intraplate Basalts from the Maritimes Basin, Magdalen Islands, Québec, Canada. Chemical Geology, 148(3-4): 115-136. https://doi.org/10.1016/S0009-2541(98)00002-3
      Lai, Z. X., 2015. The Geochemical Character of Intermediate-Basic Dikes and Its Control on Uranium Deposits in Xiazhuang Ore Field. Uranium Geology, 31(3): 370-376 (in Chinese with English abstract).
      Li, X. H., Hu, R. Z., Rao, B., 1997. Geochronology and Geochemistry of Cretaceous Mafic Dikes from Northern Guangdong, SE China. Geochimica, 26(2): 14-31 (in Chinese with English abstract).
      Li, Z. Y., Huang, Z. Z., Li, X. Z., et al., 2010. Magmatic Rocks and Uranium Mineralization in Guidong, Nanling. Geological Publishing House, Beijing (in Chinese).
      Liu, H. B., Jin, G. S., Li, J. J., et al., 2013. Determination of Stable Isotope Composition in Uranium Geological Samples. World Nuclear Geoscience, 30(3): 174-179 (in Chinese with English abstract).
      Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      Liu, J. H., 1997. Application of Isotopic Methods in the Study on Xiazhuang Granite Type Hydrothermal Uranium Deposits. Volcanology & Mineral Resources, 18(4): 292-297 (in Chinese with English abstract).
      Lu, J. J., Wu, L. Q., Ling, H. F., et al., 2006. The Origin of the Huangpi-Zhangguangying Diabase-Dykes in the Xiazhuang Uranium Ore District of Northern Guangdong Province: Evidence from Trace Elements and Nd-Sr-Pb-O Isotopes. Acta Petrologica Sinica, 22(2): 397-406 (in Chinese with English abstract).
      Ludwig, K. R., 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley.
      Luo, J. C., Qi, Y. Q., Wang, L. X., et al., 2019. Ar-Ar Dating of Mafic Dykes from the Xiazhuang Uranium Ore Field in Northern Guangdong, South China: A Reevaluation of the Role of Mafic Dyke in Uranium Mineralization. Acta Petrologica Sinica, 35(9): 2660-2678 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.09.03
      Nie, B., Zhang, W. L., 2018. Ar-Ar Age of the Diabase and Its Relationship with Uranium Mineralization in Huangsha Mining District, Southern Jiangxi Province. Mineral Resources and Geology, 32(3): 390-396 (in Chinese with English abstract).
      Pochon, A., Poujol, M., Gloaguen, E., et al., 2016. U-Pb LA-ICP-MS Dating of Apatite in Mafic Rocks: Evidence for a Major Magmatic Event at the Devonian- Carboniferous Boundary in the Armorican Massif (France). American Mineralogist, 101(11): 2430-2442. https://doi.org/10.2138/am-2016-5736
      Sun, L. Q., Wang, K. X., Dai, J. W., et al., 2024. Petrogenesis of Haidewula Diabase, Eastern Kunlun Orogenic Belt and Its Geological Implications. Earth Science, 49(4): 1261-1276 (in Chinese with English abstract).
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Thomson, S. N., Gehrels, G. E., Ruiz, J., et al., 2012. Routine Low-Damage Apatite U-Pb Dating Using Laser Ablation-Multicollector-ICPMS. Geochemistry, Geophysics, Geosystems, 13(2): Q0AA21. https://doi.org/10.1029/2011GC003928
      Tian, X. L., 2016. Geochemistry Characteristics and Relationship with Uranium Deposite of Zhuguang Mountain and Guidong Region (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Wang, G. C., 2016. Petrogenesis of Mesozoic Intrusive Rocks in Northwest Fujian and South Jiangxi Province and Their Geodynamic Implications (Dissertation). Nanjing University, Nanjing (in Chinese with English abstract).
      Wang, L. X., Ma, C. Q., Lai, Z. X., et al., 2015. Early Jurassic Mafic Dykes from the Xiazhuang Ore District (South China): Implications for Tectonic Evolution and Uranium Metallogenesis. Lithos, 239: 71-85. https://doi.org/10.1016/j.lithos.2015.10.008
      Wang, X. C., Zhang, B. T., Zhang, Z. H., 1991. A Study of the Relationship between the Dark Dyke and the Uranium Mineralization. Mineral Deposits, 10(4): 359-370 (in Chinese with English abstract).
      Wang, Y. J., Fan, W. M., Cawood, P. A., et al., 2008. Sr-Nd-Pb Isotopic Constraints on Multiple Mantle Domains for Mesozoic Mafic Rocks beneath the South China Block Hinterland. Lithos, 106(3-4): 297-308. https://doi.org/10.1016/j.lithos.2008.07.019
      Wang, Y. L., Zhang, C. J., Xiu, S. Z., 2001. Th/Hf-Ta/Hf Identification of Tectonic Setting of Basalts. Acta Petrologica Sinica, 17(3): 413-421 (in Chinese with English abstract).
      Wang, Z. Q., Li, Z. Y., Zhang, G. Y., et al., 2007. Geochemical Characteristics and the Provenance of Cretaceous Basic Dikes in Zhongdong Area of Xiazhuang Uranium Ore Field. Uranium Geology, 23(4): 218-225, 248 (in Chinese with English abstract).
      Wu, L. Q., Tan, Z. Z., Liu, R. Z., et al., 2003. Discussion on Uranium Ore-Formation Age in Xiazhuang Ore-Field, Northern Guandong. Uranium Geology, 19(1): 28-33 (in Chinese with English abstract).
      Xiang, Y. X., Wu, J. H., 2012. SHRIMP Zircon U-Pb Age of Yutian Group Basalts in Longnan Area of Southern Jiangxi Province and Its Geological Significance. Geological Bulletin of China, 31(5): 716-725 (in Chinese with English abstract).
      Zhang, D., Zhao, K. D., Chen, W., et al., 2018a. Early Jurassic Mafic Dykes from the Aigao Uranium Ore Deposit in South China: Geochronology, Petrogenesis and Relationship with Uranium Mineralization. Lithos, 308: 118-133. https://doi.org/10.1016/j.lithos.2018.02.028
      Zhang, F. F., Wang, X. L., Sun, Z. M., et al., 2018b. Geochemistry and Zircon-Apatite U-Pb Geochronology of Mafic Dykes in the Shuangxiwu Area: Constraints on the Initiation of Neoproterozoic Rifting in South China. Precambrian Research, 309: 138-151. https://doi.org/10.1016/j.precamres.2017.04.008
      Zhang, X. H., Huang, J. H., Zhang, B., et al., 2024. Sensitive Corresponding to Tectonic Transform of South China Block during Mesozoic: A Case Study on the Wuchuan-Sihui Strike-Slip Fault Zone. Acta Petrologica Sinica, 40(12): 3923-3948 (in Chinese with English abstract). doi: 10.18654/1000-0569/2024.12.14
      Zhang, Z. S., 2011. Magmatism and Its Relationship with Uranium Mineralization in the Xiazhuang Uranium Ore Field. China Atomic Energy Press, Beijing (in Chinese).
      Zhao, J. H., Zhou, M. F., 2007. Geochemistry of Neoproterozoic Mafic Intrusions in the Panzhihua District (Sichuan Province, SW China): Implications for Subduction-Related Metasomatism in the Upper Mantle. Precambrian Research, 152(1-2): 27-47. https://doi.org/10.1016/j.precamres.2006.09.002
      Zhong, F. J., Xia, F., Wang, L., et al., 2023. Geochronology and Geochemistry of Dolerite in the Lujing Uranium Ore Field of Central Zhuguangshan Complex, and Its Relationship with Uranium Mineralization. Acta Geologica Sinica, 97(8): 2593-2608 (in Chinese with English abstract).
      Zhou, J., Jiang, Y. H., Xing, G. F., et al., 2013. Geochronology and Petrogenesis of Cretaceous A-Type Granites from the NE Jiangnan Orogen, SE China. International Geology Review, 55(11): 1359-1383. https://doi.org/10.1080/00206814.2013.774199
      Zhu, B., Ling, H. F., Shen, W. Z., et al., 2006. Isotopic Geochemistry of Shituling Uranium Deposit, Northern Guangdong Province, China. Mineral Deposits, 25(1): 71-82 (in Chinese with English abstract).
      Zhu, W. G., Zhong, H., Li, X. H., et al., 2010. The Early Jurassic Mafic-Ultramafic Intrusion and A-Type Granite from Northeastern Guangdong, SE China: Age, Origin, and Tectonic Significance. Lithos, 119(3-4): 313-329. https://doi.org/10.1016/j.lithos.2010.07.005
      陈丛敏, 周云, 冯佐海, 等, 2024. 滇西点苍山新元古代辉长岩的识别及其大地构造意义. 地球科学, 49(12): 4434-4449. doi: 10.3799/dqkx.2024.062
      邓平, 沈渭洲, 凌洪飞, 等, 2003. 地幔流体与铀成矿作用: 以下庄矿田仙石铀矿床为例. 地球化学, 32(6): 520-528.
      何德宝, 2017. 粤北下庄矿田不同类型铀矿床成矿机制对比研究(博士学位论文). 北京: 核工业北京地质研究院.
      胡瑞忠, 李朝阳, 倪师军, 等, 1993. 华南花岗岩型铀矿床成矿热液中∑CO2来源研究. 中国科学(B辑), 23(2): 189-196.
      赖中信, 2015. 下庄铀矿田中基性脉岩地球化学特征及其控矿作用. 铀矿地质, 31(3): 370-376.
      李献华, 胡瑞忠, 饶冰, 1997. 粤北白垩纪基性岩脉的年代学和地球化学. 地球化学, 26(2): 14-31.
      李子颖, 黄志章, 李秀珍, 等, 2010. 南岭贵东岩浆岩与铀成矿作用. 北京: 地质出版社.
      刘汉彬, 金贵善, 李军杰, 等, 2013. 铀矿地质样品的稳定同位素组成测试方法. 世界核地质科学, 30(3): 174-179.
      刘金辉, 1997. 同位素方法在下庄花岗岩型铀矿床研究中的应用. 火山地质与矿产, 18(4): 292-297.
      陆建军, 吴烈勤, 凌洪飞, 等, 2006. 粤北下庄铀矿田黄陂‒张光营辉绿岩脉的成因: 元素地球化学和Nd-Sr-Pb-O同位素证据. 岩石学报, 22(2): 397-406.
      骆金诚, 齐有强, 王连训, 等, 2019. 粤北下庄铀矿田基性岩脉Ar-Ar定年及其与铀成矿关系新认识. 岩石学报, 35(9): 2660-2678.
      聂斌, 张万良, 2018. 赣南黄沙矿区辉绿岩Ar-Ar年龄及其与铀成矿关系. 矿产与地质, 32(3): 390-396.
      孙立强, 王凯兴, 戴佳文, 等, 2024. 东昆仑造山带海德乌拉辉绿岩成因及其地质意义. 地球科学, 49(4): 1261-1276.
      田晓龙, 2016. 诸广山‒贵东地区基性岩脉的地球化学特征及其与铀矿的关系(硕士学位论文). 北京: 中国地质大学.
      王国昌, 2016. 闽西北与赣南地区中生代侵入岩成因及其地球动力学意义研究(博士学位论文). 南京: 南京大学.
      王学成, 章邦桐, 张祖还, 1991. 暗色岩脉与铀成矿关系研究. 矿床地质, 10(4): 359-370.
      汪云亮, 张成江, 修淑芝, 2001. 玄武岩类形成的大地构造环境的Th/Hf-Ta/Hf图解判别. 岩石学报, 17(3): 413-421.
      王正其, 李子颖, 张国玉, 等, 2007. 下庄中洞地区白垩纪基性脉岩地球化学特征及其源区性质. 铀矿地质, 23(4): 218-225, 248.
      吴烈勤, 谭正中, 刘汝洲, 等, 2003. 粤北下庄矿田铀矿成矿时代探讨. 铀矿地质, 19(1): 28-33.
      项媛馨, 巫建华, 2012. 赣南龙南地区余田群玄武岩SHRIMP锆石U-Pb年龄及其地质意义. 地质通报, 31(5): 716-725.
      张献河, 黄建桦, 张波, 等, 2024. 华南板块中生代构造体制转换的最直接响应: 吴川‒四会走滑断裂带宏‒微观构造解析. 岩石学报, 40(12): 3923-3948.
      张展适, 2011. 下庄铀矿田岩浆作用及其与铀成矿关系. 北京: 中国原子能出版社.
      钟福军, 夏菲, 王玲, 等, 2023. 诸广中部鹿井铀矿田辉绿岩磷灰石U-Pb年龄、地球化学特征及其与铀成矿关系. 地质学报, 97(8): 2593-2608.
      朱捌, 凌洪飞, 沈渭洲, 等, 2006. 粤北石土岭铀矿床同位素地球化学研究. 矿床地质, 25(1): 71-82.
    • 李海东 ES-2023-0554 附表.docx
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(12)  / Tables(2)

      Article views (166) PDF downloads(14) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return