• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 11
    Nov.  2025
    Turn off MathJax
    Article Contents
    Jiang Tao, Zheng Jianping, Su Yuping, Yang Zhiguo, Li Xin, 2025. Structure Composition and Formation Process of Cenozoic High-K Calc-Alkaline Volcanic Rocks in Tengchong Area. Earth Science, 50(11): 4387-4404. doi: 10.3799/dqkx.2025.173
    Citation: Jiang Tao, Zheng Jianping, Su Yuping, Yang Zhiguo, Li Xin, 2025. Structure Composition and Formation Process of Cenozoic High-K Calc-Alkaline Volcanic Rocks in Tengchong Area. Earth Science, 50(11): 4387-4404. doi: 10.3799/dqkx.2025.173

    Structure Composition and Formation Process of Cenozoic High-K Calc-Alkaline Volcanic Rocks in Tengchong Area

    doi: 10.3799/dqkx.2025.173
    • Received Date: 2025-05-06
    • Publish Date: 2025-11-25
    • Since the Cenozoic, a large amount of high-potassium calc-alkaline volcanic rocks (basaltic trachyandesite and trachyandesite) have developed in the Tengchong area, but the specific formation process remains unclear. Based on petrographic analysis, in this paper it conducts whole-rock major element and mineral major and trace element analyses of these volcanic rocks, and discusses their formation and evolution process in combination with the published data. The rocks commonly exhibit porphyritic textures, with phenocrysts predominantly consisting of olivine, pyroxene, and plagioclase, and the development of glomerocrysts. Clinopyroxene phenocrysts commonly show normal zoning, reverse zoning, and oscillatory zoning, with oscillatory zoning indicating multi-stage mafic magma replenishment and possible local contamination during magma evolution. Whole-rock major element analysis reveals that these rocks belong to the high-potassium calc-alkaline rock series. Clinopyroxene, orthopyroxene, and plagioclase phenocrysts and glomerocrysts show similar REE and trace element distribution patterns, with clinopyroxene being the most enriched in trace elements, followed by plagioclase, and orthopyroxene showing the lowest concentrations. The geochemical characteristics of olivine phenocrysts suggest that the magma source region may have originated from partial melting of peridotite, while the trace element compositions of the whole rocks and clinopyroxene phenocrysts record geochemical signatures characteristic of an arc-related tectonic setting. The mineral equilibrium temperature-pressure calculations reveal the existence of two intermediate to felsic magma reservoirs beneath the study area: a shallow dacitic magma reservoir (depth 8.3-13.6 km) and a deep andesitic magma reservoir (depth 18.4-30.2 km). The studied samples are derived from the deeper reservoir. Their formation involves mafic magma recharge, triggering mixing between crystal mush and melt; when newly generated melts become dominant within the reservoir, eruption is triggered, carrying semi-consolidated magmatic clots to the surface and forming the typical (glomerocrystic) textures.

       

    • loading
    • Cao, J., Chen, M. M., Wan, S. M., et al., 2024. Petrogenesis and Deep Dynamic Processes of Early Permian Alkaline Lamprophyres in Tarim Large Igneous Province, NW China. Earth Science, 49(7): 2448-2474 (in Chinese with English abstract).
      Carracedo, J. C., 1999. Growth, Structure, Instability and Collapse of Canarian Volcanoes and Comparisons with Hawaiian Volcanoes. Journal of Volcanology and Geothermal Research, 94(1-4): 1-19. https://doi.org/10.1016/S0377-0273(99)00095-5
      Cashman, K. V., Sparks, R. S. J., Blundy, J. D., 2017. Vertically Extensive and Unstable Magmatic Systems: A Unified View of Igneous Processes. Science, 355(6331): eaag3055. https://doi.org/10.1126/science.aag3055
      Chen, K. F., He, H. Y., Stuart, F., et al., 2023a. Binary Mixing of Lithospheric Mantle and Asthenosphere beneath Tengchong Volcano, SE Tibet: Evidence from Noble Gas Isotopic Signatures. International Geology Review, 65(2): 236-252. https://doi.org/10.1080/00206814.2022.2042744
      Chen, K. F., Liu, S. L., Yang, D. H., et al., 2023b. Lithospheric Thinning beneath the Tengchong Volcanic Field, Southern China: Insight from Cenozoic Calc- Alkaline Basalts. Frontiers in Earth Science, 11: 1036001. https://doi.org/10.3389/feart.2023.1036001
      Chen, T. F., 2003. The Petrology of the Volcanic Rocks in Tengchong, Yunnan. Sedimentary Geology and Tethyan Geology, 23(4): 56-61 (in Chinese with English abstract).
      Chen, T. F., Zhao, C. H., 1994. Discussion on the Tectonic Setting of the Tengcong Cenozoic Volcanic Rocks. Journal of Southwest University of Science and Technology, 9(4): 52-59 (in Chinese with English abstract).
      Cheng, Z. H., Guo, Z. F., Dingwell, D. B., et al., 2020. Geochemistry and Petrogenesis of the Post-Collisional High-K Calc-Alkaline Magmatic Rocks in Tengchong, SE Tibet. Journal of Asian Earth Sciences, 193: 104309. https://doi.org/10.1016/j.jseaes.2020.104309
      Cheng, Z. H., Yang, Z. J., Zhao, W. B., et al., 2020. Gabbroic Xenoliths and Glomerocrysts in the Post-Collisional Trachyandestic Rocks from Tengchong, SE Tibet: Implications for the Magma Chamber Processes. Acta Petrologica Sinica, 36(7): 2127-2148 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.07.14
      Ding, L. L., Liu, J. Q., Guo, Z. F., et al., 2018. The Eruption Trigger of the Dacitic Magma in Tengchong during the Middle Pleistocene. Acta Petrologica Sinica, 34(1): 113-125 (in Chinese with English abstract).
      Duan, X. Z., Fan, H. R., Zhang, H. F., et al., 2019. Melt Inclusions in Phenocrysts Track Enriched Upper Mantle Source for Cenozoic Tengchong Volcanic Field, Yunnan Province, SW China. Lithos, 324/325: 180-201. https://doi.org/10.1016/j.lithos.2018.10.034
      Elardo, S. M., Shearer, C. K., 2014. Magma Chamber Dynamics Recorded by Oscillatory Zoning in Pyroxene and Olivine Phenocrysts in Basaltic Lunar Meteorite Northwest Africa 032. American Mineralogist, 99(2-3): 355-368. https://doi.org/10.2138/am.2014.4552
      Fan, Q. C., Liu, R. X., Wei, H. Q., et al., 1999. Magmatic Evolution of Tengchong Active Volcano. Geological Review, 45(S1): 895-904 (in Chinese with English abstract).
      Foley, S. F., Prelevic, D., Rehfeldt, T., et al., 2013. Minor and Trace Elements in Olivines as Probes into Early Igneous and Mantle Melting Processes. Earth and Planetary Science Letters, 363: 181-191. https://doi.org/10.1016/j.epsl.2012.11.025
      Gao, J. F., Zhou, M. F., Robinson, P. T., et al., 2015. Magma Mixing Recorded by Sr Isotopes of Plagioclase from Dacites of the Quaternary Tengchong Volcanic Field, SE Tibetan Plateau. Journal of Asian Earth Sciences, 98: 1-17. https://doi.org/10.1016/j.jseaes.2014.10.036
      Glazner, A., Bartley, J., Coleman, D., 2016. We Need a New Definition for "Magma". Eos, 97. https://doi.org/10.1029/2016eo059741
      Guo, Z. F., Cheng, Z. H., Zhang, M. L., et al., 2015. Post-Collisional High-K Calc-Alkaline Volcanism in Tengchong Volcanic Field, SE Tibet: Constraints on Indian Eastward Subduction and Slab Detachment. Journal of the Geological Society, 172(5): 624-640. https://doi.org/10.1144/jgs2014-078
      Guo, Z. P., Zou, H. B., 2021. Decoupled Whole-Rock and Zircon Hf Isotopes in Young Evolved Post-Collisional Lavas from Dayingshan (SE Tibet): Evidence for Open-System Magmatic Processes. Lithos, 400/401: 106393. https://doi.org/10.1016/j.lithos.2021.106393
      Hu, J. H., Song, X. Y., He, H. L., et al., 2018. Constraints of Texture and Composition of Clinopyroxene Phenocrysts of Holocene Volcanic Rocks on a Magmatic Plumbing System beneath Tengchong, SW China. Journal of Asian Earth Sciences, 154: 342-353. https://doi.org/10.1016/j.jseaes.2017.12.029
      Hu, Z. C., Zhang, W., Liu, Y. S., et al., 2015. "Wave" Signal-Smoothing and Mercury-Removing Device for Laser Ablation Quadrupole and Multiple Collector ICPMS Analysis: Application to Lead Isotope Analysis. Analytical Chemistry, 87(2): 1152-1157. https://doi.org/10.1021/ac503749k
      Huang, X. W., Zhou, M. F., Wang, C. Y., et al., 2013. Chalcophile Element Constraints on Magma Differentiation of Quaternary Volcanoes in Tengchong, SW China. Journal of Asian Earth Sciences, 76: 1-11. https://doi.org/10.1016/j.jseaes.2013.07.020
      Jiang, C. S., 1998a. Period Division of Volcano Activities in the Cenozoic Era of Tengchong. Journal of Seismological Research, 21(4): 320 (in Chinese with English abstract).
      Jiang, C. S., 1998b. Distribution Characteristics of Tengchong Volcano in the Cenozoic Era. Journal of Seismological Research, 21(4): 309-319 (in Chinese with English abstract).
      Leterrier, J., Maury, R. C., Thonon, P., et al., 1982. Clinopyroxene Composition as a Method of Identification of the Magmatic Affinities of Paleo-Volcanic Series. Earth and Planetary Science Letters, 59(1): 139-154. https://doi.org/10.1016/0012-821X(82)90122-4
      Li, D. P., Luo, Z. H., Liu, J. Q., et al., 2012. Magma Origin and Evolution of Tengchong Cenozoic Volcanic Rocks from West Yunnan, China: Evidence from Whole Rock Geochemistry and Nd-Sr-Pb Isotopes. Acta Geologica Sinica - English Edition, 86(4): 867-878. https://doi.org/10.1111/j.1755-6724.2012.00712.x
      Li, L. L., Wang, S. B., Liu, J. H., et al., 2015. Age and Origin of Mid-Pleistocene Volcanic Rocks from Qushi in Tengchong Area, Western Yunnan Province: SHRIMP Zircon U-Pb Dating and Constraint from Hf-in-Zircon Isotopes. Acta Petrologica Sinica, 31(9): 2609-2619 (in Chinese with English abstract).
      Li, N., Zhang, L. Y., 2011. A Study on Volcanic Minerals and Hosted Melt Inclusions in Newly-Erupted Tengchong Volcanic Rocks, Yunnan Province. Acta Petrologica Sinica, 27(10): 2842-2854 (in Chinese with English abstract).
      Li, N., Zhao, Y. W., Zhang, L. Y., et al., 2020. The Quaternary Eruptive Sequence of the Tengchong Volcanic Group, Southwestern China. Lithos, 354/355: 105173. https://doi.org/10.1016/j.lithos.2019.105173
      Li, X., Liu, J. Q., 2012. A Study on the Geochemical Characteristics and Petrogenesis of Holocene Volcanic Rocks in the Tengchong Volcanic Eruption Field, Yunnan Province, SW China. Acta Petrologica Sinica, 28(5): 1507-1516 (in Chinese with English abstract).
      Lin, M. S., Peng, S. B., Qiao, W. T., 2017. 40Ar/39Ar Geochronology and Geochemistry of Pleistocene Trachyandesite in Tengchong, Western Yunnan, China, and Its Tectonic Implication. Acta Petrologica Sinica, 33(10): 3137-3146 (in Chinese with English abstract).
      Lin, M. S., Peng, S. B., Qiao, W. T., et al., 2014. Characteristics and Genetic Significance of High Temperature Granulite Xenoliths in Cenozoic Volcanic Rocks, Tengchong, Western Yunnan Province, China. Earth Science, 39(7): 807-819 (in Chinese with English abstract).
      Loucks, R. R., 1990. Discrimination of Ophiolitic from Nonophiolitic Ultramafic-Mafic Allochthons in Orogenic Belts by the Al/Ti Ratio in Clinopyroxene. Geology, 18(4): 346. https://doi.org/10.1130/0091-7613(1990)0180346:doofnu>2.3.co;2 doi: 10.1130/0091-7613(1990)0180346:doofnu>2.3.co;2
      Luo, T., Hu, Z. C., Zhang, W., et al., 2018. Reassessment of the Influence of Carrier Gases He and Ar on Signal Intensities in 193 nm Excimer LA-ICP-MS Analysis. Journal of Analytical Atomic Spectrometry, 33(10): 1655-1663. https://doi.org/10.1039/C8JA00163D
      Luo, Z. H., Liu, J. Q., Zhao, C. P., et al., 2011. Deep Fluids and Magmatism: The Deep Processes beneath the Tengchong Volcano Group. Acta Petrologica Sinica, 27(10): 2855-2862 (in Chinese with English abstract).
      Mo, X. X., Zhao, Z. D., Deng, J. F., et al., 2006. Petrology and Geochemistry of Postcollisional Volcanic Rocks from the Tibetan Plateau: Implications for Lithosphere Heterogeneity and Collision-Induced Asthenospheric Mantle Flow. Postcollisional Tectonics and Magmatism in the Mediterranean Region and Asia, 409: 507-530. https://doi.org/10.1130/2006.2409(24)
      Nakagawa, M., Wada, K., Wood, C. P., 2002. Mixed Magmas, Mush Chambers and Eruption Triggers: Evidence from Zoned Clinopyroxene Phenocrysts in Andesitic Scoria from the 1995 Eruptions of Ruapehu Volcano, New Zealand. Journal of Petrology, 43(12): 2279-2303. https://doi.org/10.1093/petrology/43.12.2279
      Nisbet, E. G., Pearce, J. A., 1977. Clinopyroxene Composition in Mafic Lavas from Different Tectonic Settings. Contributions to Mineralogy and Petrology, 63(2): 149-160. https://doi.org/10.1007/BF00398776
      Putirka, K. D., 2005. Igneous Thermometers and Barometers Based on Plagioclase+Liquid Equilibria: Tests of Some Existing Models and New Calibrations. American Mineralogist, 90(2-3): 336-346. https://doi.org/10.2138/am.2005.1449
      Putirka, K. D., 2008. Thermometers and Barometers for Volcanic Systems. Reviews in Mineralogy and Geochemistry, 69(1): 61-120. https://doi.org/10.2138/rmg.2008.69.3
      Putirka, K. D., Mikaelian, H., Ryerson, F., et al., 2003. New Clinopyroxene-Liquid Thermobarometers for Mafic, Evolved, and Volatile-Bearing Lava Compositions, with Applications to Lavas from Tibet and the Snake River Plain, Idaho. American Mineralogist, 88(10): 1542-1554. https://doi.org/10.2138/am-2003-1017
      Simkin, T., Smith, J. V., 1970. Minor-Element Distribution in Olivine. The Journal of Geology, 78(3): 304-325. doi: 10.1086/627519
      Sobolev, A. V., Hofmann, A. W., Kuzmin, D. V., et al., 2007. The Amount of Recycled Crust in Sources of Mantle-Derived Melts. Science, 316(5823): 412-417. https://doi.org/10.1126/science.1138113
      Sobolev, A. V., Hofmann, A. W., Sobolev, S. V., et al., 2005. An Olivine-Free Mantle Source of Hawaiian Shield Basalts. Nature, 434(7033): 590-597. https://doi.org/10.1038/nature03411
      Streck, M. J., 2008. Mineral Textures and Zoning as Evidence for Open System Processes. Reviews in Mineralogy and Geochemistry, 69(1): 595-622. https://doi.org/10.2138/rmg.2008.69.15
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Tian, H. C., Yang, W., Li, S. G., et al., 2018. Low δ26Mg Volcanic Rocks of Tengchong in Southwestern China: A Deep Carbon Cycle Induced by Supercritical Liquids. Geochimica et Cosmochimica Acta, 240: 191-219. https://doi.org/10.1016/j.gca.2018.08.032
      Tucker, R. T., Zou, H. B., Fan, Q. C., et al., 2013. Ion Microprobe Dating of Zircons from Active Dayingshan Volcano, Tengchong, SE Tibetan Plateau: Time Scales and Nature of Magma Chamber Storage. Lithos, 172/173: 214-221. https://doi.org/10.1016/j.lithos.2013.04.017
      Wang, F., Peng, Z. C., Zhu, R. X., et al., 2006. Petrogenesis and Magma Residence Time of Lavas from Tengchong Volcanic Field (China): Evidence from U Series Disequilibria and 40Ar/39Ar Dating. Geochemistry, Geophysics, Geosystems, 7(1): 2005GC001023. https://doi.org/10.1029/2005GC001023
      Wang, Y., Zhang, X. M., Jiang, C. S., et al., 2007. Tectonic Controls on the Late Miocene-Holocene Volcanic Eruptions of the Tengchong Volcanic Field along the Southeastern Margin of the Tibetan Plateau. Journal of Asian Earth Sciences, 30(2): 375-389. https://doi.org/10.1016/j.jseaes.2006.11.005
      Xu, C. L., Zhao, G. T., He, Y. Y., et al., 2012. Geochemistry of Cenozoic Volcanic Rocks from Tengchong, Western Yunnan. Marine Geology & Quaternary Geology, 32(2): 65-75 (in Chinese with English abstract).
      Xu, Y., Li, X. L., Wang, S., 2018. Seismic Structure beneath the Tengchong Volcanic Area (Southwest China) from Receiver Function Analysis. Journal of Volcanology and Geothermal Research, 357: 339-348. https://doi.org/10.1016/j.jvolgeores.2018.05.011
      Xu, Y., Yang, X. T., Li, Z. W., et al., 2012. Seismic Structure of the Tengchong Volcanic Area Southwest China from Local Earthquake Tomography. Journal of Volcanology and Geothermal Research, 239/240: 83-91. https://doi.org/10.1016/j.jvolgeores.2012.06.017
      Yang, H. Y., Hu, J. F., Hu, Y. L., et al., 2013. Crustal Structure in the Tengchong Volcanic Area and Position of the Magma Chambers. Journal of Asian Earth Sciences, 73: 48-56. https://doi.org/10.1016/j.jseaes.2013.04.027
      Yao, J., 2018. Research on the Geochemical Composition and Genesis of Cenozoic Volcanic Rocks in Tengchong (Dissertation). University of Science and Technology of China, Hefei (in Chinese with English abstract).
      Yu, H. M., Lin, C. Y., Shi, L. B., et al., 2010. Characteristics and Genesis of Mafic-Ultramafic Inclusions in Rough Andesite in Heikongshan, Tengchong. Scientia Sinica (Terrae), 40(12): 1697-1709 (in Chinese with English abstract). doi: 10.1360/zd2010-40-12-1697
      Yu, H. M., Xu, J. D., Lin, C. Y., et al., 2012. Magmatic Processes Inferred from Chemical Composition, Texture and Crystal Size Distribution of the Heikongshan Lavas in the Tengchong Volcanic Field, SW China. Journal of Asian Earth Sciences, 58: 1-15. https://doi.org/10.1016/j.jseaes.2012.07.013
      Yu, H. M., Xu, J. D., Lin, C. Y., et al., 2012. Microstructural Characteristics of Trachyandesite Lavas in Heikongshan, Ma'anshan and Dayingshan Volcanoes, Tengchong, Yunnan Province and Its Volcanological Implications. Acta Petrologica Sinica, 28(4): 1205-1216 (in Chinese with English abstract).
      Zhang, J. F., Tang, J., Xu, W. L., et al., 2023. Translithospheric Magmatic Plumbing System of a Late Early Cretaceous Intraplate Volcano in NE China: Insights from Geochemistry and Phenocryst Composition. Lithos, 460/461: 107371. https://doi.org/10.1016/j.lithos.2023.107371
      Zhang, L., Hu, Y. L., Qin, M., et al., 2015. Study on Crustal and Lithosphere Thicknesses of Tengchong Volcanic Area in Yunnan. Chinese Journal of Geophysics, 58(3): 256-268. https://doi.org/10.1002/cjg2.220171
      Zhang, Y. T., Liu, J. Q., Meng, F. C., 2012. Geochemistry of Cenozoic Volcanic Rocks in Tengchong, SW China: Relationship with the Uplift of the Tibetan Plateau. Island Arc, 21(4): 255-269. https://doi.org/10.1111/j.1440-1738.2012.00819.x
      Zhao, C. H., Chen, T. F., 1992. A Discussion on Magma-Tectonic Type of Cenozoic Volcanism from Tengchong Area (Yunnan Province): A New Type of Post-Collision arc-Volcanism. Geoscience, 6(2): 119-129 (in Chinese with English abstract).
      Zhao, Y., Guo, Z., Wang, K., et al., 2021. A Large Magma Reservoir beneath the Tengchong Volcano Revealed by Ambient Noise Adjoint Tomography. Journal of Geophysical Research: Solid Earth, 126(7): e2021JB022116. https://doi.org/10.1029/2021JB022116
      Zhao, Y. W., Fan, Q. C., 2010. Magma Origin and Evolution of Maanshan Volcano, Dayingshan Volcano and Heikongshan Volcano in Tengchong Area. Acta Petrologica Sinica, 26(4): 1133-1140 (in Chinese with English abstract).
      Zhou, M. F., Robinson, P. T., Wang, C. Y., et al., 2012. Heterogeneous Mantle Source and Magma Differentiation of Quaternary Arc-Like Volcanic Rocks from Tengchong, SE Margin of the Tibetan Plateau. Contributions to Mineralogy and Petrology, 163(5): 841-860. https://doi.org/10.1007/s00410-011-0702-8
      Zhou, Z. H., Xiang, C. Y., Jiang, C. S., 2000. Geochemistry of the Rare Earth and Trace Elements in the Volcanic Rocks in Tengchong, China. Journal of Seismological Research, 23(2): 215-230 (in Chinese with English abstract).
      Zhu, B. Q., Mao, C. X., Lugmair, G. W., et al., 1983. Isotopic and Geochemical Evidence for the Origin of Plio-Pleistocene Volcanic Rocks near the Indo-Eurasian Collisional Margin at Tengchong, China. Earth and Planetary Science Letters, 65(2): 263-275. https://doi.org/10.1016/0012-821X(83)90165-6
      Zou, H. B., Fan, Q. C., Schmitt, A. K., et al., 2010. U-Th Dating of Zircons from Holocene Potassic Andesites (Maanshan Volcano, Tengchong, SE Tibetan Plateau) by Depth Profiling: Time Scales and Nature of Magma Storage. Lithos, 118(1/2): 202-210. https://doi.org/10.1016/j.lithos.2010.05.001
      Zou, H. B., Shen, C. C., Fan, Q. C., et al., 2014. U-Series Disequilibrium in Young Tengchong Volcanics: Recycling of Mature Clay Sediments or Mudstones into the SE Tibetan Mantle. Lithos, 192/193/194/195: 132-141. https://doi.org/10.1016/j.lithos.2014.01.017
      曹俊, 陈苗苗, 万淑敏, 等, 2024. 塔里木大火成岩省二叠纪碱性煌斑岩的岩石成因和深部地球动力学过程. 地球科学, 49(7): 2448-2474. doi: 10.3799/dqkx.2022.490
      陈廷方, 2003. 云南腾冲火山岩岩石学特征. 沉积与特提斯地质, 23(4): 56-61.
      陈廷方, 赵崇贺, 1994. 腾冲新生代火山岩的构造环境分析. 西南工学院学报, 9(4): 52-59.
      成智慧, 杨志军, 赵文斌, 等, 2020. 青藏高原东南缘腾冲后碰撞粗面安山岩形成的深部岩浆过程: 来自辉长质物质的启示. 岩石学报, 36(7): 2127-2148.
      丁磊磊, 刘嘉麒, 郭正府, 等, 2018. 滇西腾冲中更新世英安质岩浆的爆发机制. 岩石学报, 34(1): 113-125.
      樊祺诚, 刘若新, 魏海泉, 等, 1999. 腾冲活火山的岩浆演化. 地质论评, 45(S1): 895-904.
      姜朝松, 1998a. 腾冲地区新生代火山活动分期. 地震研究, 21(4): 320.
      姜朝松, 1998b. 腾冲新生代火山分布特征. 地震研究, 21(4): 309-319.
      李琳琳, 王书兵, 刘建辉, 等, 2015. 滇西腾冲曲石地区中更新世火山岩年龄及成因: SHRIMP锆石U-Pb定年和Hf同位素约束. 岩石学报, 31(9): 2609-2619.
      李霓, 张柳毅, 2011. 云南腾冲新期火山岩矿物及其熔体包裹体研究. 岩石学报, 27(10): 2842-2854.
      李欣, 刘嘉麒, 2012. 云南腾冲全新世火山岩地球化学特征及其成因. 岩石学报, 28(5): 1507-1516.
      林木森, 彭松柏, 乔卫涛, 2017. 滇西腾冲更新世粗面安山岩Ar-Ar年代学、地球化学特征及其构造意义. 岩石学报, 33(10): 3137-3146.
      林木森, 彭松柏, 乔卫涛, 等, 2014. 滇西腾冲地块新生代火山岩中高温麻粒岩包体的发现及成因. 地球科学, 39(7): 807-819. doi: 10.3799/dqkx.2014.076
      罗照华, 刘嘉麒, 赵慈平, 等, 2011. 深部流体与岩浆活动: 兼论腾冲火山群的深部过程. 岩石学报, 27(10): 2855-2862.
      徐翠玲, 赵广涛, 何雨旸, 等, 2012. 滇西腾冲新生代火山岩岩石地球化学特征. 海洋地质与第四纪地质, 32(2): 65-75.
      姚金, 2018. 腾冲新生代火山岩地球化学组成及其成因研究(硕士学位论文). 合肥: 中国科学技术大学.
      于红梅, 林传勇, 史兰斌, 等, 2010. 腾冲黑空山粗安岩中镁铁质-超镁铁质包体的特征及成因初探. 中国科学: 地球科学, 40(12): 1697-1709.
      于红梅, 许建东, 林传勇, 等, 2012. 云南腾冲黑空山、马鞍山和打莺山火山粗安岩显微结构特征及其火山学意义. 岩石学报, 28(4): 1205-1216.
      赵崇贺, 陈廷方, 1992. 腾冲新生代火山作用构造-岩浆类型的探讨: 一种滞后型的弧火山. 现代地质, 6(2): 119-129.
      赵勇伟, 樊祺诚, 2010. 腾冲马鞍山、打鹰山、黑空山火山岩浆来源与演化. 岩石学报, 26(4): 1133-1140.
      周真恒, 向才英, 姜朝松, 2000. 腾冲火山岩稀土和微量元素地球化学研究. 地震研究, 23(2): 215-230.
    • 王坤 附表.docx
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(15)  / Tables(2)

      Article views (144) PDF downloads(13) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return