• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 30 Issue 4
    Jul.  2005
    Turn off MathJax
    Article Contents
    HUANG Si-jing, SHI He, ZHANG Meng, WU Wen-hui, SHEN Li-cheng, HUANG Cheng-gang, 2005. Strontium Isotope Age Calibration of Rudist Bivalves from Late Cretaceous Section in Southern Tibet. Earth Science, 30(4): 437-442.
    Citation: HUANG Si-jing, SHI He, ZHANG Meng, WU Wen-hui, SHEN Li-cheng, HUANG Cheng-gang, 2005. Strontium Isotope Age Calibration of Rudist Bivalves from Late Cretaceous Section in Southern Tibet. Earth Science, 30(4): 437-442.

    Strontium Isotope Age Calibration of Rudist Bivalves from Late Cretaceous Section in Southern Tibet

    • Received Date: 2004-11-29
    • Publish Date: 2005-07-25
    • The direct numerical age calibration for sedimentary rocks is more difficult in sedimentology and stratigraphy. The long oceanic residence time of Sr (≈106 a) and the rapid mixing rate of the oceans (≈103 a) have caused the strontium isotope ratio of seawater to be globally homogeneous at any given time, as documented by identical 87Sr/ 86Sr ratios for coeval marine carbonates, and therefore, the 87Sr/86Sr ratios are the function of geological time which is the fundamental principle of strontium isotope stratigraphy (SIS) and the theoretical basis of dating marine sediments using SIS. In this paper, 87Sr/ 86Sr ratios of 4 rudist bivalves collected from a sedimentary section of the Late Cretaceous in the southern Tibet were measured. Based on the very low Mn/Sr ratio (average 0.01) of the samples, it is thought that they contain information on the original seawater strontium isotope composition. The ages of the fossils were calibrated according to the principle of strontium isotope stratigraphy. The 4 samples are located at 381, 362, 358 and 296 m, respectively, with the accumulation thickness in the section. Corresponding 87Sr/ 86Sr ratios are 0.707 832, 0.707 769, 0.707 768 and 0.707 695, respectively, and the ages calibrated are 65.68, 69.34, 69.39 and 72.32 Ma, respectively. The average error for dating by strontium isotope stratigraphy is approximately ±1 Ma. The research shows a potential value of SIS in dating marine rocks.

       

    • loading
    • Burke, W.H., Denison, R.E., Hetherington, E.A., et al., 1982. Variation of 87Sr/86Sr throughout Phanerozoic time. Geology, 10: 516-519.
      Gleason, J.D., Moore, T.C., Rea, D.K., et al., 2002. Ichthyolith strontium isotope tratigraphy of a Neogene red clay sequence: Calibrating eolian dust accumulation rates in the central North Pacific. Earth and Planetary Science Letters, 202: 625-636. doi: 10.1016/S0012-821X(02)00827-0
      Hayden, H. H., 1912. The geology of Spiti. Mem. Geol. Surv. Indian, 36: 1-144.
      Howarth, R.J., McArthur, J.M., 1997. Statistics for strontium isotope stratigraphy: Arobust LOWESS fit to marine Sr-isotope curve for 0 to 206 Ma, with look-up table for derivation of numeric age(look-up table version 8/96). J. Geol., 105: 441-456. doi: 10.1086/515938
      Hu, X.M., Wang, C.S., Li, X.H., 2001. Carbon stable isotopes and the event of paleo-dissolved oxygen of marine Cretaceous in southern Tibet. Progress in Natural Science, 11(7): 721-728(in Chinese with English abstract).
      Huang, S.J., Shi, H., Mao, X.D., et al., 2002a. Evolution of Sr isotopes of the Cambrian sections in Xiushan, Chongqing, and related global correlation. Geological Review, 48(5): 509-516(in Chinese with English abstract).
      Huang, S.J., Shi, H., Shen, L.C., et al., 2005. Global correlation for strontium isotope curve in the Late Cretaceous of Tibet and dating marine sediments. Science in China (Series D), 18(2): 199-205.
      Huang, S.J., Shi, H., Zhang, M., et al., 2002b. Global correlation of strontium isotope evolution curve of Devonian in Longmen mountain and dating marine sediments. Progress in Natural Science, 12(9): 945-951(in Chinese with English abstract).
      Huang, S. J., Shi, H., Zhang, M., et al., 2001. Strontium isotope evolution and global sea-level changes of Carboniferous and Permian marine carbonte, upper Yangtze Platform. Acta Sedimentologica Sinica, 19(4): 481-487(in Chinese with English abstract).
      Jiang, M.S., Zhu, J.Q., Chen, D.Z., et al., 2002. Carbon and strontium isotope variations and responses to sealevel fluctuations in the Ordovician of the Tarim basin. Science in China(Series D), 32(1): 36-42(in Chinese).
      Kaufman, A. J., Jacobsen, S. B., Knoll, A. H., 1993. The Vendian record of Sr- and C-isotopic variations in seawater: Implications for tectonics and paleoclimate. Earth Planet. Sci. Lett., 120: 409-430. doi: 10.1016/0012-821X(93)90254-7
      Kaufman, A.J., Knoll, A.H., Awramik, S.M., 1992. Biostratigraphic and chemostratigraphic correlation of Neoproterozoic sedimentary successions: Upper Tindir Group, northwestern Canada, as a test case. Geology, 20: 181-185.
      Koepnick, R.B., Burke, W.H., Denison, R.E., et al., 1985. Construction of the seawater 87Sr/86Sr curve for the Cenozoic and Cretaceous: Supporting data. Chem. Geol. (Isot. Geosci. Sect. ), 58: 55-81. doi: 10.1016/0168-9622(85)90027-2
      McArthur, J.M., Howarth, R.J., Bailey, T.R., 2001. Strontium isotope stratigraphy: LOWESS version 3: Best fit to the marine Sr-isotope curve for 0-509 Ma and accompanying look-up table for deriving numerical age. J. Geol., 109: 155-170. doi: 10.1086/319243
      McArthur, J.M., Morton, M., Thirlwall, M.F., 2000. Strontium isotope stratigraphy of the Aalenian/Bajocian auxiliary stratotype point at Bearreraig, Isle of Skye, NW Scotland. GeoRes. Forum., 6: 137-144.
      Melezhik, V. A., Gorokhov, I. M., Fallick, A. E., et al., 2001. Strontium and carbon isotope geochemistry applied to dating of carbonate sedimentation: An example from high-grade rocks of the Norwegian Caledonides. Precambrian Research, 108: 267-292. doi: 10.1016/S0301-9268(01)00135-8
      Pan, J. H., Liu, S. Q., Yang, Y., et al., 2002. Sr isotopic compositions and age dating of marine phosphates from Pacific seamounts. Mineral Deposits, 21(4): 350-355 (in Chinese with English abstract).
      Ray, J.S., Veizer, J., Davis, W.J., 2003. C, O, Sr and Pb isotope systematics of carbonate sequences of the Vindhyan Supergroup, India: Age, diagenesis, correlations and implications for global events. Precambrian Research, 121: 103-140. doi: 10.1016/S0301-9268(02)00223-1
      Sun, Z.G., 2003. Shell strontium isotopic chemistry of the cheniers in the Yellow River delta. Marine Geology Letters, 19(7): 19-22(in Chinese with English abstract).
      Walter, M. R., Veevers, J. J., Calver, C. R., et al., 2000. Dating the 840-544 Ma Neoproterozoic interval by isotopes of strontium, carbon, and sulfur in seawater, and some interpretative models. Precambrian Research, 100: 371-433. doi: 10.1016/S0301-9268(99)00082-0
      Wan, X.Q., 1985. Cretaceous strata and foraminifera of Gangba region, Xizang (Tibet). Contribution to the geology of the Qinghai-Xizang (Tibet) Plateau (16). Geological Publishing House, Beijing, 203-228(in Chinese).
      Wan, X.Q., Zhao, W.J., Li, G.B., 2000. Restudy of the Upper Cretaceous in Gamba, Tibet. Geoscience, 14(3): 281-285(in Chinese with English abstract).
      Wickman, F.E., 1948. Isotope ratios: A clue to the age of certain marine sediments. J. Geol., 56: 61-66. doi: 10.1086/625478
      Yang, J.D., Zheng, W.W., Wang, Z.Z., et al., 2001. Age determining of the Upper Precambrian system of northern Jiangsu-Anhui by using Sr and C isotopes. Journal of Stratigraphy, 25(1): 44-47(in Chinese with English abstract).
      Zhao, W.J., 2001. Late Cretaceous foraminiferal faunas and eustatic change in Gamba area, southern Tibet. Geological Journal o f China Universities, 7(1): 106-117(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200101012.htm
      Zhao, W. J., Wan, X. Q., 2001. Recovery of foraminifera from the Late Cretaceous Cenomanian-Turonian mass extinction in Gamba, southern Tibet. Acta Palaeontologica Sinica, 40(2): 189-194(in Chinese with English abstract).
      胡修棉, 王成善, 李祥辉, 2001. 藏南海相白垩纪碳酸盐碳稳定同位素演化与古海洋溶解氧事件. 自然科学进展, 11(7): 721-728. doi: 10.3321/j.issn:1002-008X.2001.07.008
      黄思静, 石和, 毛晓冬, 等, 2002a. 重庆秀山寒武系锶同位素演化曲线及全球对比. 地质论评, 48(5): 509-516. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200205010.htm
      黄思静, 石和, 沈立成, 等, 2004. 西藏晚白垩世锶同位素曲线的全球对比及海相地层的定年. 中国科学(D辑), 34(4): 335-344. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200404005.htm
      黄思静, 石和, 张萌, 等, 2001. 上扬子石炭—二叠纪海相碳酸盐的锶同位素演化与全球海平面变化. 沉积学报, 19(4): 481-487. doi: 10.3969/j.issn.1000-0550.2001.04.001
      黄思静, 石和, 张萌等, 2002b. 龙门山泥盆纪锶同位素演化曲线的全球对比及海相地层的定年. 自然科学进展, 12(9): 945-951. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJZ200209012.htm
      江茂生, 朱井泉, 陈代钊, 等, 2002. 塔里木盆地奥陶纪碳酸盐岩碳、锶同位素特征及其对海平面变化的响应. 中国科学(D辑), 32(1): 36-42. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200201004.htm
      潘家华, 刘淑琴, 杨忆, 等, 2002. 太平洋海山磷酸盐的锶同位素成分及形成年代. 矿床地质, 21(4): 350-355. doi: 10.3969/j.issn.0258-7106.2002.04.005
      孙志国, 2003. 黄河三角洲贝壳堤的锶同位素特征. 海洋地质动态, 19(7): 19-22. doi: 10.3969/j.issn.1009-2722.2003.07.003
      万晓樵, 1985. 西藏岗巴地区白垩纪地层及有孔虫动物群. 青藏高原地质文集(16). 北京: 地质出版社, 203-228.
      万晓樵, 赵文金, 李国彪, 2000. 对西藏岗巴上白垩统的新认识. 现代地质, 14(3): 281-285. doi: 10.3969/j.issn.1000-8527.2000.03.007
      杨杰东, 郑文武, 王宗哲, 等, 2001. Sr、C同位素对苏皖北部上前寒武系时代的界定. 地层学杂志, 25(1): 44-47. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ200101008.htm
      赵文金, 2001. 西藏岗巴晚白垩世有孔虫动物群与海平面变化. 高校地质学报, 7(1): 106-117. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200101012.htm
      赵文金, 万晓樵, 2001. 西藏南部岗巴地区晚白垩世Cenomanian-Turonian集群灭绝事件后有孔虫动物群的复苏. 古生物学报, 40(2): 189-194. doi: 10.3969/j.issn.0001-6616.2001.02.003
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(4)  / Tables(2)

      Article views (3848) PDF downloads(10) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return