• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 30 Issue 4
    Jul.  2005
    Turn off MathJax
    Article Contents
    ZHOU Cui-ying, ZHANG Liang, HUANG Xian-yi, 2005. Classification of Rocks Surrounding Tunnel Based on Improved BP Network Algorithm. Earth Science, 30(4): 480-486.
    Citation: ZHOU Cui-ying, ZHANG Liang, HUANG Xian-yi, 2005. Classification of Rocks Surrounding Tunnel Based on Improved BP Network Algorithm. Earth Science, 30(4): 480-486.

    Classification of Rocks Surrounding Tunnel Based on Improved BP Network Algorithm

    • Received Date: 2004-12-07
    • Publish Date: 2005-07-25
    • The classification of rocks surrounding a tunnel has an important significance for guiding design and construction in underground engineering. This paper introduces an artificial neural network method into the classification of these rocks. Based on traditional back propagation (BP) arithmetic, an enhanced neural network method is obtained by improving the training algorithm, transfer function and network structure. By combining the additive momentum method with the self-adjusting learning speed method, the algorithm has been improved: when the error is bigger than the upper critical limits the learning speed automatically decreases; when the error is smaller than the lower critical limits the learning speed automatically increases. Thus, the training speed can be fast yet at the same time the stability of the network can be ensured. By introducing the parameter of adjusting learning speed, the transfer process becomes more sensitive and the convergent speed becomes faster, thus, increasing the calculating precision of the training function. By giving a data range for a certain implicit layer joint model, the structure of the network is optimized; correspondingly, the functional precision is improved. The improved BP network model is tested in example classifications of some typical rocks surrounding tunnels in the Dong Shen Water Supply Reconstruction Project. The results fit well with the classification according to the code of hydraulic tunnel design in China, which indicates that this improved method has a high practical application.

       

    • loading
    • Cong, S., 1998. MATLAB toolbox oriented theory and appli- cation of neural network. University of Science andTechnology of China Press, Hefei(in Chinese).
      Feisi Research and Development Center of Science and Technology Product, 2003. Auxiliary analysis and design of neural networks by MATLAB 6.5. Electronic Industry Publishing House, Beijing(in Chinese).
      Feng, X.T., 2000. Introduction to intelligent rock mechanics. Science Press, Beijing(in Chinese).
      Hao, Z., Liu, B., 2003. Back analysis of mechanical parameters of rocks surrounding openings on the basis of calculus of difference and neural network. Rock and Soil Mechanics, 24(Suppl. ): 78 -79(in Chinese with English abstract).
      Hu, Y.B., Huang, X.B., 2002. Effect of the Three Gorges Project storing on stabil ity of T8-T12 fracture segment of hazardous rocks in Lianziya. Earth Sicence Journal of China University o f Geosciences, 27(2): 193 -198(in Chinese with English abstract).
      Huo, R.K., Liu, H.D., 1998. An application of neural net work to surrounding rock stability classification. Journal o f North China Institute o f Water Conservancy and Hydroelectric Power, 19(2): 62 -63(in Chinese with English abstract).
      Lou, S.T., Shi, Y., 2000. System analysis and design based on MATLAB -Neural Networks. Xidian University Press, Xi'an(in Chinese).
      Rao, Y.Z., Hou, Y.B., 2001. Application of artificial neural network method in the wall rock stability classification evaluation. Gold, 22(10): 15 -16(in Chinese with English abstract).
      Standards of Water Conservancy in People's Republic of China, 2003. Specification for design of hydraulic tunnel(SL279-2002). China Water Power Press, Beijing(in Chinese).
      Tan, C.X., Wang, R.J., Sun, Y., 2000. Present-day structural activity of Shenzhen fracture zone and its effect on crustal stability of water diversion tunnel in Shenzhen. Earth Sicence -Journal of China University of Geo-sciences, 25(1): 51 -56(in Chinese with English abstract).
      Wang, X.C., Zhang, H., Liu, Z.H., 2001. Geological hazards about west-line project of water diversion from upper Yangtze River into upper Yellow River. Earth Sicence Journal o f China University o f Geosciences, 26(3): 297 -303(in Chinese with English abstract).
      William, C.C., Margery, E.H., 1997. Guidelines for the selection of network architecture. Artificial Intelligence for Engineering Design Analysis and Manufacturing, 11(5): 395 -408. doi: 10.1017/S0890060400003322
      丛爽, 1998. 面向MATLAB工具箱的神经网络理论与应用. 合肥: 中国科学技术大学出版社.
      飞思科技产品研发中心, 2003. MATLAB 6.5辅助神经网络分析与设计. 北京: 电子工业出版社.
      冯夏庭, 2000. 智能岩石力学导论. 北京: 科学出版社.
      郝哲, 刘斌, 2003. 基于差分法及神经网络的硐室围岩力学参数反分析. 岩土力学, 24 (增刊): 78-79.
      霍润科, 刘汉东, 1998. 神经网络法在地下洞室围岩分类中的应用. 华北水利水电学院学报, 19 (2): 62-63. https://www.cnki.com.cn/Article/CJFDTOTAL-HBSL802.016.htm
      胡亚波, 黄学斌, 2002. 长江三峡工程蓄水对链子崖危岩体T8-T12缝段稳定性影响研究. 地球科学———中国地质大学学报, 27 (2): 193-198. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200202017.htm
      楼顺天, 施阳, 2000. 基于MATLAB的系统分析与设计———神经网络. 西安: 西安电子科技大学出版社.
      饶运章, 侯运炳, 2001. 神经网络方法在围岩稳定性分级评价中的应用. 黄金, 22 (10): 15-16. https://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ200110003.htm
      谭成轩, 王瑞江, 孙叶, 2000. 深圳断裂带现今构造活动性及其对深圳市输水隧洞工程地壳稳定性影响. 地球科学———中国地质大学学报, 25 (1): 51-56. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200001010.htm
      王学潮, 张辉, 刘振红, 等, 2001. 南水北调西线工程地质灾害初步研究. 地球科学———中国地质大学学报, 26 (3): 297-303. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200103012.htm
      中华人民共和国水利行业标准, 2003. 水工隧洞设计规范(SL279-2002). 北京: 中国水利水电出版社.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(5)  / Tables(4)

      Article views (3636) PDF downloads(14) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return