• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 29 Issue 6
    Jun.  2004
    Turn off MathJax
    Article Contents
    CHENG Qiu-ming, 2004. Quantifying the Generalized Self-Similarity of Spatial Patterns for Mineral Resource Assessment. Earth Science, 29(6): 733-743.
    Citation: CHENG Qiu-ming, 2004. Quantifying the Generalized Self-Similarity of Spatial Patterns for Mineral Resource Assessment. Earth Science, 29(6): 733-743.

    Quantifying the Generalized Self-Similarity of Spatial Patterns for Mineral Resource Assessment

    • Received Date: 2004-07-15
    • Publish Date: 2004-11-25
    • Scale invariance, including self-similarity (isotropic), self-affinity (stratification), and generalized self-similarity (anisotropy), is a common property of spatial patterns generated from various geological processes and events. Scale invariance can be described by means of fractal and multifractal models. Quantifying the scale invariance properties of spatial patterns may provide a powerful tool for characterizing geological processes and events. For example, the clustering distribution of hydrothermal mineral deposits can be characterized by means of local singularity analysis. The identification of distinct generalized self-similarity in the Fourier domain can be used to decompose spatial patterns into separate components such as anomalies from background patterns. The current paper introduces a number of relevant multifractal models and methods, including a linear model for generalized scale invariance (GSI); a spectrum-area method (S-A) for anomaly separation; a local singularity analysis method; and methods for predicting undiscovered mineral deposits on the basis of fractal and multifractal properties. Some of these methods have been applied in various case studies. The case study introduced in the current paper demonstrates the application of S-A anomaly separation and local anomaly enhancement in analyzing lake sediment geochemical data (As, Pb, Zn and Cu) for gold mineral resource prediction. It has been shown that the areas delineated by a strong singularity in As, Pb, Zn and Cu are spatially associated with the location of known gold mineral deposits.

       

    • loading
    • Agterberg, F.P., 1995. Power-law versus lognormal models in mineral exploration. In: Mitri, H.S., ed., Computer applications in the mineral industry. Proceedings of the third Canadian conference on computer applications in the Mineral Industry. 17-26.
      Agterberg, F.P., Cheng, Q., Wright, D., 1993. Fractal modeling of mineral deposits. Proceedings XXIV APCOM, October 31-Nov. 3, 1993, Montreal, Quebec, 43-53.
      Bonham-Carter, G.F., 1994, Geographic information system for geosciences: Modelling with GSI. Pergamon Press, Oxford, 398.
      Broadgate, M., Cheng, Q., Hayward, N., et al., 2001. Using fractals and power laws to predict the location of mineral deposits. In: John, H., ed., Proceedings of mathematics-inindustry study group workshop, Jan. 29-Feb. 2, 2001, Adelaide, Australia, 91-98.
      Chatterjee, A.K., 1983. Metallogenic map of Nova Scotia, version 1, scale 1: 500 000. Department of Mines and Energy, Nova Scotia, Canada.
      Cheng, Q., 1994. GSI-based methods for mineral resource assessment: Mitchell-Sulphurest area, Canada. Ph. D. dissertation. University of Ottawa, 268.
      Cheng, Q., 1999a. Multifractal interpolation. In: Lippard, S.J., Naess, A., Sinding-Larsen, R., eds., Proceedings of the fourth annual conference of the international association for mathematical geology. Trondheim, Norway, 245-250.
      Cheng, Q., 1999b. Multifractality and spatial statistics. Computers & Geosciences, 25(9): 949-961. http://www.onacademic.com/detail/journal_1000035034158110_1512.html
      Cheng, Q., 2000a. Interpolation by means of multiftractal, kriging and moving average techniques. In: Proceedings of GAC/MAC meeting GeoCanada 2000, May 29 to June, 2, 2000, Calgary. http://www.gisworld.org/gac-gis/geo2000.htm.
      Cheng, Q., 2000b. GeoData analysis system(GeoDAS) for mineral exploration: User's guide and exercise manual. Material for the training workshop on GeoDAS held at York university, Nov. 1 to 3, 2000.204, www.gsiworld.org/geodat.
      Cheng, Q.M., 2001a. Multifractal and geostatistical methods for exploration geochemical anomaly texture and singularity analysis. Earth Science—Journal of China University of Geosciences, 26(2): 161-166(in Chinese with English abstract).
      Cheng, Q., 2001b. The decomposition of geochemical map patterns on the basis of their scaling properties in order to separate anomalies from background. In: Proceedings of the international statistical institute held in Seoul on August 22-29, 2001.
      Cheng, Q., 2003a. Fractal and multifractal modeling of hydrothermal mineral deposit spectrum: Application to gold deposits in the Abitibi area, Ontario, Canada. Journal of China University of Geosciences, 14(3): 199-206.
      Cheng, Q., 2003b. Non-linear mineral exploration model and unconventional mineral resource assessment. Earth Science—Journal of China University of Geosciences, 28(4): 445-454(in Chinese with English abstract).
      Cheng, Q., 2004a. GSI-based fractal anomaly analysis for prediction of mineralization and mineral deposits. In: Jeff, H., Danny, W., eds., A special volume of geological association of Canada on"GSI Technology for Geology", in press.
      Cheng, Q., 2004b. A new technique for quantifying anisotropic scale invariance and for decomposition of mixing patterns. Math. Geol. , 36(3): 345-360. doi: 10.1023/B:MATG.0000028441.62108.8a
      Cheng, Q., Agterberg, F.P., Ballantyne, S.B., 1994. The separation of geochemical anomalies from background by fractal methods. Journal of Exploration Geochemistry, 51(2): 109-130. doi: 10.1016/0375-6742(94)90013-2
      Cheng, Q., Xu, Y., Grunsky, E., 1999. Integrated spatial and spectral analysis for geochemical anomaly separation. In: Lippard, S.J., Naess, A., Sinding-Larsen, R., eds., Proceedings of the fourth annual conference of the international association for mathematical geology. Trondheim, Norway 6-11th August, 87-92.
      Harris, J.R., Wlkinson, L., Grunsky, E., et al., 1999. Techniques for analysis and visualization of lithogeochemical data with application to Swayze Greenstone Belt, Ontario. Journal of Geochemical Exploration, 67(1-3): 301-344. doi: 10.1016/S0375-6742(99)00077-1
      Li, Q.M., Cheng, Q.M., 2004. Fractal singularity decomposition method and anomaly reconstruction. Earth Science—Journal of China University of Geosciences, 29(1): 108119(in Chinese with English abstract).
      Lovejoy, S., Schertzer, D., 1985. Generalized scale invariance and fractal models of rain. Water Resources Research, 21(8): 1233-1250. doi: 10.1029/WR021i008p01233
      Rogers, P.J., Mills, R.F., Lombard, P.A., 1987. Regional geochemical study in Nova Scotia. In: Bates, J., MacDonald, D.R., eds., Mines and mineral branch, Report of activities, 1986, 147-154.
      Schertzer, D., Lovejoy, S., 1991. Nonlinear variability in geophysics. Kluwer Academic Publ., Dordrecht, The Netherlands, 318.
      Turcotte, D.L., 2002. Fractals in petrology. Lithos, 65: 261-271. doi: 10.1016/S0024-4937(02)00194-9
      Xu, Y., Cheng, Q., 2001. A multifractal filter technique for geochemical data analysis from Nova Scotia, Canada. J. Geochemistry: Exploration, Analysis and Environment, 1(2): 147-156. doi: 10.1144/geochem.1.2.147
      Yu, C.W., 2002. Complexity of earth systems—fundamental issues of earth sciences(Ⅰ). Earth Science—Journal of China University of Geosciences, 27(5): 509-519(in Chinese with English abstract).
      Zhao, P.D., Chen, Y.Q., 2001. Geo-anomaly: Extreme value distribution in geology and its applications in quantitative assessment of mineral resources. In: Bulletin of the Int. Stat. Inst., 53rd Session. Seoul on August 22-29, 2001, invited paper, book2, 477-480.
      Zhao, P.D., 1998. Geoanomaly and mineral prediction: Modern mineral resource assessment theory and method. Geological Publishing House, Beijing, 300(in Chinese with English abstract).
      成秋明, 2001a. 多重分形与地质统计学方法用于勘查地球化学异常空间结构和奇异性分析. 地球科学———中国地质大学学报, 26(2): 161-166. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200102012.htm
      成秋明, 2003b. 非线性矿床模型与非常规矿产资源评价. 地球科学———中国地质大学学报, 28(4): 445-454. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200304015.htm
      李庆谋, 成秋明, 2004. 分形奇异值分解方法与异常重建. 地球科学———中国地质大学学报, 29(1): 108-119. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200401019.htm
      於崇文, 2002. 地球系统复杂性-地球科学的基础问题. 地球科学———中国地质大学学报, 27(5): 509-519.
      赵鹏大, 1998. 地质异常与矿床预测: 现代矿产资源评价理论与方法. 北京: 地质出版社, 300.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)

      Article views (4266) PDF downloads(32) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return