Discovery and Significance of Beimulang Porphyry Cu-Mo Deposit, Xizang
-
摘要: 西藏朱诺矿集区位于冈底斯成矿带西段,区内北东-南西向化探异常呈串珠状大面积展布,成矿条件优越,是新一轮找矿突破战略行动部署的重点区块.北姆朗铜钼矿床为近年来在该矿集区内继朱诺超大型矿床之后新发现的又一斑岩型铜钼矿床,累计查明铜金属量49.72万吨,平均品位0.51%.北姆朗铜钼矿床岩浆作用强烈,发育成矿前石英斑岩(~49.7 Ma),成矿主期二长花岗斑岩(~14.8~14.0 Ma)、二长花岗岩(~14.8~14.1 Ma)、闪长玢岩(~14.6 Ma)和成矿晚期花岗斑岩(~12.5~11.0 Ma)、煌斑岩.矿化主要赋存在成矿主期岩体及成矿前石英斑岩中,与成矿密切相关的地质体为二长花岗斑岩和二长花岗岩.北姆朗铜钼矿床辉钼矿Re-Os年龄限定成矿时代为13.8±0.1 Ma.北姆朗铜钼矿床角砾岩发育,包括电气石胶结角砾岩、碎屑物支撑结构角砾岩和石英-黄铁矿胶结角砾岩.北姆朗铜钼矿床热液蚀变强烈发育,由中心钾化(进一步分为钾长石蚀变和黑云母蚀变)、外围青磐岩化和浅部绢英岩化蚀变组成,3种蚀变相互叠加,其中黑云母化蚀变与矿化最为密切.北姆朗铜钼矿床的发现证实主流观点认为不能成矿或成矿潜力较小的区域也可以形成大型-超大型斑岩铜矿床,为深入研究碰撞造山带斑岩成矿作用过程及深部控矿机制提供了新的实例.北姆朗铜钼矿床的发现得益于地质、化探、高光谱等综合找矿方法应用示范,特别是短波红外光谱技术可以很好地指示热液/矿化中心.该矿床的发现为该区域寻找同类型矿床指明了方向,也为朱诺矿集区成为我国又一个新的千万吨级铜资源基地提供了重要成果支撑.Abstract: The Zhunuo ore concentration district is located in the western Gangdese metallogenic belt, Xizang. The area contains a large NE-SW geochemistry anomaly, which exhibits favorable metallogenic conditions and is a key block for the deployment of a new round of breakthrough strategic actions in mineral exploration. The Beimulang deposit is a newly discovered porphyry Cu-Mo deposit after the Zhunuo deposit in the area. Beimulang contains a mental reserve of 1.3 million tons averaging 0.51% Cu. Magmatic activity in the deposit is strong, including pre-mineralization quartz porphyry (~49.7 Ma), inter-mineralization monzogranite porphyry(~14.8-14.0 Ma), monzogranite(~14.1 Ma), diorite porphyry, and late-mineralization granite porphyry (~11.0-11.7 Ma), lamprophyre. Mineralization occurs mainly in the main inter-mineralization and pre-mineralization intrusions. Molybdenite Re-Os dating shows that main-stage mineralization at Beimulang formed in 13.8±0.1 Ma. Three breccia types have been observed in the deposit, typically located in the apical parts of monzogranite porphyry: (1) tourmaline-cemented breccia, (2) clast-supported breccia, and (3) quartz-pyrite-cemented breccia. Hydrothermal alteration is strongly developed and includes central potassic, peripheral propylitic, and shallow phyllic alteration. The three kinds of alteration are superimposed on each other. Biotite alteration is most closely associated with Cu mineralization. The discovery of the Beimulang deposit confirms the prevailing view that large and super-large porphyry Cu deposits can be formed in areas that cannot be formed or have low ore-forming potential, which provides a new example for further study of the porphyry mineralization process and deep metallogenic mechanism in collision orogenic belt. The discovery of the Beimulang Cu-Mo deposit is attributed to the demonstration of comprehensive exploration methods such as geology, stream sediment geochemical, and hyperspectral analysis. In particular, short-wave infrared spectroscopy technology can effectively trace hydrothermal/mineralization centers. The discovery of the deposit has pointed out the direction for searching for similar deposits in the region and also provided important support for the Zhunuo ore concentration district to become another new ten million tons of copper resource base in China.
-
Key words:
- alteration-mineralization /
- hyperspectral /
- porphyry copper deposit /
- Beimulang /
- Xizang /
- mineral deposits
-
图 1 拉萨地体构造分区简图(a);冈底斯带典型斑岩铜矿床分布(b)
图a据Zhu et al.(2011)修改;图b据Hou et al.(2015),Zhao et al.(2009),Wang et al.(2015),Wu et al.(2016)修改. BNSZ. 班公湖-怒江缝合带;CL. 中拉萨地体;IYZSZ. 印度河-雅鲁藏布江缝合带;JSSZ. 金沙江缝合带;LMF. 洛巴堆-米拉山断裂;NL. 北拉萨地体;SL. 南拉萨地体;SNMZ. 狮泉河-纳木错蛇绿混杂岩带
Fig. 1. Tectonic framework of the Tibetan Plateau(a), simplified geologic map of the Lhasa terrane showing porphyry deposits(b)
图 4 北姆朗铜钼矿床地质图(据Liu et al., 2022修改)
Fig. 4. Geological map of the Beimulang Cu-Mo deposit (modified after Liu et al., 2022)
图 5 北姆朗铜钼矿床成岩-成矿时代(Liu et al., 2022; Du et al., 2023; Ai et al., 2024)
Fig. 5. Diagram showing magmatic-hydrothermal evolution of the Beimulang Cu-Mo deposit (Liu et al., 2022; Du et al., 2023; Ai et al., 2024)
图 8 北姆朗铜钼矿床蚀变与矿化特征
a. 二长花岗斑岩中钾长石-电气石脉,钾长石晕;b. 二长花岗岩中钾长石、电气石与黄铜矿共生(正交偏光);c. 二长花岗岩中石英-钾长石-黄铜矿脉,黑云母晕;d. 二长花岗岩中共生的细粒钾长石、黑云母与黄铜矿(正交偏光);e. 二长花岗岩中共生的黑云母与黄铜矿(反射光);f. 二长花岗斑岩中绿泥石-石英脉;g. 二长花岗岩中黑云母蚀变为绿泥石和方解石(正交偏光);h. 二长花岗岩中共生的绿泥石、电气石和黄铜矿(单偏光);i. 二长花岗斑岩中绿帘石细脉;j. 二长花岗斑岩中团块状绿帘石与方解石(正交偏光);k. 石英斑岩中石英-辉钼矿-黄铁矿脉与黄铁矿-石英脉,石英-绢云母脉;l. 绢英岩化蚀变的石英斑岩中黄铁矿-黄铜矿-电气石脉;m. 二长花岗岩中长石蚀变为绢云母(正交偏光);n. 二长花岗斑岩中黑云母蚀变为绢云母、绿泥石和磁铁矿(正交偏光);o. 二长花岗岩中弥散状绢云母、石英、电气石与黄铜矿(正交偏光);p. 二长花岗岩中共生的斑铜矿与磁铁矿(反射光);q. 二长花岗岩中共生的斑铜矿与黄铜矿(反射光);r. 二长花岗岩中黄铜矿呈乳滴状分布在闪锌矿中与方铅矿共生(反射光). 缩写:Bt. 黑云母;Bn. 斑铜矿;Cal. 方解石;Ccp. 黄铜矿;Chl. 绿泥石;Ep. 绿帘石;Gn. 方铅矿;Kfs. 钾长石;MG. 二长花岗岩;MGP. 二长花岗斑岩;Mol. 辉钼矿;Mt. 磁铁矿;Py. 黄铁矿;QP. 石英斑岩;Qz. 石英;Ser.绢云母;Sph. 闪锌矿;Tur. 电气石
Fig. 8. The alteration and mineralization characteristics of the Beimulang Cu-Mo deposit
图 9 北姆朗铜钼矿床遥感解译蚀变信息分布(a); 1∶5万水系沉积物Cu元素空间分布(b);短波红外光谱白云母Al-OH波长空间变化(c);短波红外光谱白云母结晶度空间变化(d);短波红外光谱白云母Al-OH特征峰吸收深度空间变化(e);短波红外光谱绿泥石Fe-OH波长空间变化(f)
水系沉积物数据引用自西藏自治区地质调查院,2004-01至2008-12,西藏朱诺地区矿产远景调查报告;短波红外光谱数据引用自中国地质大学(北京),2018-07至2021-06,冈底斯中段斑岩成矿系统深部预测评价与找矿示范科技报告
Fig. 9. Remote sensing interpretation of alteration information distribution (a); 1∶50 000 spatial distribution of Cu element in stream sediments (b); spatial variation of muscovite Al-OH wavelength in short-wavelength infrared characteristics (c); spatial variation of crystallinity of muscovite in short-wavelength infrared characteristics (d); spatial variation of absorption depth of Al-OH characteristic peak of muscovite in short-wavelength infrared characteristics (e); spatial variation of chlorite Fe-OH wavelength in short-wavelength infrared characteristics (f)
表 1 北姆朗铜钼矿床不同岩体锆石U-Pb测年结果
Table 1. Zircon U-Pb dating results of different rock masses in Beimulang Cu-Mo deposit
岩性 Th U Th/U 206Pb/238U (10-6) 年龄(Ma) ±1σ 石英斑岩 152~1 470 146~1 168 0.60~1.88 48.0~50.7 0.5~1.0 二长花岗斑岩 244~3 330 420~1 895 0.35~1.08 13.4~15.6 0.2~0.6 二长花岗岩 251~3 408 345~3 915 0.31~1.15 13.2~15.3 0.3~0.7 闪长玢岩 601~1 980 892~2 136 0.40~0.93 14.4~14.8 0.3~0.5 花岗斑岩 308~15 110 576~13 290 0.15~1.69 10.8~12.9 0.2~0.5 注:数据来自于 Liu et al.(2022 );Du et al.(2023 );Ai et al.(2024 ).表 2 北姆朗铜钼矿床不同岩体主微量元素特征
Table 2. Main and trace element characteristics of different rock masses in Beimulang copper-molybdenum deposit
岩性 SiO2 (%) K2O (%) Sr (10-6) Y (10-6) Sr/Y La (10-6) Yb (10-6) La/Yb 二长花岗斑岩 67.7~72.7 3.3~7.5 661~864 5.2~13.1 51~139 11.3~54.4 0.4~1.2 18~100 二长花岗岩 65.7~71.4 3.3~4.6 477~809 6.2~12.4 55~98 24.6~38.8 0.6~1.1 28~57 花岗斑岩 69.9~79.0 3.9~6.4 79~573 3.8~16.3 7~63 18.6~59.8 0.5~1.9 21~85 注:数据来自于 Liu et al.(2022 );Du et al.(2023 );Ai et al.(2024 ).表 3 北姆朗铜钼矿床不同岩体全岩Sr、Nd和锆石Hf同位素分析结果
Table 3. Sr, Nd and Hf isotopic analysis results of different rock masses in Beimulang copper-molybdenum deposit
岩性 二长花岗斑岩 二长花岗岩 花岗斑岩 87Sr/86Sr 0.707 57~0.710 79 0.707 51~0.708 84 0.709 25~0.712 12 (87Sr/86Sr)i 0.701 12~0.708 45 0.707 25~0.708 27 0.708 49~0.709 99 143Nd/144Nd 0.512 15~0.512 50 0.512 22~0.512 32 0.512 14~0.512 23 εNd(t) -9.4~-1.9 -7.9~-6.0 -9.5~-7.8 176Yb/177Hf 0.009 30~0.024 00 0.010 40~0.018 82 176Lu/177Hf 0.000 42~0.000 98 0.000 42~0.000 72 176Hf/177Hf 0.282 65~0.282 74 0.282 62~0.282 69 εHf(t) -3.2~-0.9 -5.3~-2.7 注:数据来自于 Liu et al.(2022 );Du et al.(2023 );Ai et al.(2024 ). -
Ai, Y. M., Xiao, B., Zhao, J. F., et al., 2024. Ages, Petrogenesis and Metallogenesis Implications of the Miocene Adakite-Like Igneous Rocks in the Beimulang Porphyry Cu Deposit, Southern Tibet. Ore Geology Reviews, 173: 106249. https://doi.org/10.1016/j.oregeorev.2024.106249 Chen, H. Y., Zhang, S. T., Chu, G. B., et al., 2019. The Short Wave Infrared (SWIR) Spectral Characteristics of Alteration Minerals and Applications for Ore Exploration in the Typical Skarn-Porphyry Deposits, Edong Ore District, Eastern China. Acta Petrologica Sinica, 35(12): 3629-3643(in Chinese with English abstract). doi: 10.18654/1000-0569/2019.12.04 Chen, X., Zheng, Y. Y., Gao, S. B., et al., 2020. Ages and Petrogenesis of the Late Triassic Andesitic Rocks at the Luerma Porphyry Cu Deposit, Western Gangdese, and Implications for Regional Metallogeny. Gondwana Research, 85: 103-123. https://doi.org/10.1016/j.gr.2020.04.006 Ding, L. I. N., Kapp, P., Zhong, D., et al., 2003. Cenozoic Volcanism in Tibet: Evidence for a Transition from Oceanic to Continental Subduction. Journal of Petrology, 44(10): 1833-1865. https://doi.org/10.1093/petrology/egg061 Du, Z. Z., Cheng, Z. Z., Yu, X. F., et al., 2023. Geochronology and Petrogeochemistry of Miocene Porphyries from the Beimulang Deposit, Western Gangdese Copper Belt. Ore Geology Reviews, 162: 105682. https://doi.org/10.1016/j.oregeorev.2023.105682 Hou, Z. Q., Gao, Y. F., Qu, X. M., et al., 2004. Origin of Adakitic Intrusives Generated during Mid-Miocene East-West Extension in Southern Tibet. Earth and Planetary Science Letters, 220(1/2): 139-155. https://doi.org/10.1016/S0012-821X(04)00007-X Hou, Z. Q., Yang, Z., Lu, Y., et al., 2015. A Genetic Linkage between Subduction-and Collision-Related Porphyry Cu Deposits in Continental Collision Zones. Geology, 43(3): 247-250. https://doi.org/10.1130/G36362.1 Hou, Z. Q., Zheng, Y. C., Lu, Z. W., et al., 2020. Growth, Thickening and Evolution of the Thickened Crust of the Tibet Plateau. Acta Geologica Sinica, 94(10): 2797-2815(in Chinese with English abstract). Huang, Q., Wu, S., Liu, X. F., et al., 2025. The Metallogenic Age of Tangge Skarn-Type Copper-Lead-Zinc Deposit in Xizang: Constraints from Garnet U-Pb Geochronology. Earth Science, 50(2): 621-638(in Chinese with English abstract). Li, J. Z., Wu, S., Lin, Y. B., et al., 2022. Alteration-Mineralization Style and Prospecting Potential of Cimabanshuo Porphyry Copper Deposit in Tibet. Earth Science, 47(6): 2219-2244(in Chinese with English abstract). Liu, P., Wu, S., Zheng, Y. Y., et al., 2022. Geology and Factors Controlling the Formation of the Newly Discovered Beimulang Porphyry Cu Deposit in the Western Gangdese, Southern Tibet. Ore Geology Reviews, 144: 104823. doi: 10.1016/j.oregeorev.2022.104823 Lü, F. J., Hao, Y. S., Shi, J., et al., 2009. Alteration Remote Sensing Anomaly Extraction Based on Aster Remote Sensing Data. Acta Geoscientica Sinica, 30(2): 271-276(in Chinese with English abstract). http://www.oalib.com/paper/1558004 Mo, X., Niu, Y., Dong, G., et al., 2008. Contribution of Syncollisional Felsic Magmatism to Continental Crust Growth: A Case Study of the Paleogene Linzizong Volcanic Succession in Southern Tibet. Chemical Geology, 250: 49-67. https://doi.org/10.1016/j.chemgeo.2008.02.003 Pour, A. B., Hashim, M., Marghany, M., 2011. Using Spectral Mapping Techniques on Short Wave Infrared Bands of ASTER Remote Sensing Data for Alteration Mineral Mapping in SE Iran. International Journal of Physical Sciences, 6(4): 917-929. Ren, H., Zheng, Y. Y., Wu, S., et al., 2023. Short-Wavelength Infrared Characteristics and Composition of White Mica in the Demingding Porphyry Cu-Mo Deposit, Gangdese Belt, Tibet: Implications for Mineral Exploration. Ore Geology Reviews, 105833. Sun, X., Zheng, Y. Y., Wu, S., et al., 2013. Mineralization Age and Petrogenesis of Associated Intrusions in the Mingze-Chengba Porphyry-Skarn Mo-Cu Deposit, Gangdese. Acta Petrologica Sinica, 29(4): 1392-1406(in Chinese with English abstract). Tafti, R., Lang, J. R., Mortensen, J. K., et al., 2014. Geology and Geochronology of the Xietongmen (Xiongcun) Cu-Au Porphyry District, Southern Tibet, China. Economic Geology, 109(7): 1967-2001. https://doi.org/10.2113/econgeo.109.7.1967 Wang, R., Luo, C. H., Xia, W., et al., 2021. Role of Alkaline Magmatism in Formation of Porphyry Deposits in Non-arc Settings: Gangdese and Sanjiang Metallogenic Belts. SEG Special Publications, 24: 205-229. https://doi: 10.5382/SP.24.12 Wang, R., Richards, J. P., Zhou, L. M., et al., 2015. The Role of Indian and Tibetan Lithosphere in Spatial Distribution of Cenozoic Magmatism and Porphyry Cu-Mo Deposits in the Gangdese Belt, Southern Tibet. Earth-Science Reviews, 150: 68-94. doi: 10.1016/j.earscirev.2015.07.003 Wang, R., Weinberg, R. F., Collins, W. J., et al., 2018. Origin of Postcollisional Magmas and Formation of Porphyry Cu Deposits in Southern Tibet. Earth-Science Reviews, 181: 122-143. https://doi: 10.1016/j.earscirev.2018.02.019 Wang, R., Weinberg, R. F., Zhu, D. C., et al., 2022. The Impact of a Tear in the Subducted Indian Plate on the Miocene Geology of the Himalayan-Tibetan Orogen. Geological Society of America Bulletin, 134(3-4): 681-690. https://doi.org/10.1130/B36023.1 Wu, S., Zheng, Y. Y., Sun, X., 2016. Subduction Metasomatism and Collision-Related Metamorphic Dehydration Controls on the Fertility of Porphyry Copper Ore-Forming High Sr/Y Magma in Tibet. Ore Geology Reviews, 73: 83-103. https://doi.org/10.1016/j.oregeorev.2015.10.023 Yang, J. Z., Fang, H. B., Zhang, Y. J., et al., 2003. Remote Sensing Anomaly Extraction in Important Metallogenic Belts of Western China. Remote Sensing for Land & Resources, 15(3): 50-53(in Chinese with English abstract). Yang, K., Lian, C., Huntington, J. F., et al., 2005. Infrared Spectral Reflectance Characterization of the Hydrothermal Alteration at the Tuwu Cu-Au Deposit, Xinjiang, China. Mineralium Deposita, 40(3): 324-336. https://doi.org/10.1007/s00126-005-0479-7 Yang, Z. M., Cooke, D. R., 2019. Porphyry Copper Deposits in China. Society of Economic Geologists Special Publication, 22: 133-187. https://doi.org/10.5382/SP.22.05 Yang, Z. M., Goldfarb, R., Chang, Z. S., 2016. Generation of Postcollisional Porphyry Copper Deposits in Southern Tibet Triggered by Subduction of the Indian Continental Plate. Society of Economic Geologists Special Publication, 19: 279-300. https://doi: 10.5382/SP.19.11 Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211-280. https://doi.org/10.1146/ANNUREV.EARTH.28.1.211 Zhao, Y. Y., Liu, X. F., Liu, Y. C., et al., 2017. Copper Metallogenic Condition of Cimabanshuo Area around Zhunuo Copper Mine in Tibet. Gansu Geology, 26(4): 28-36(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GSDZ201704005.htm Zhao, Z. D., Mo, X. X., Dilek, Y., et al., 2009. Geochemical and Sr-Nd-Pb-O Isotopic Compositions of the Post-Collisional Ultrapotassic Magmatism in SW Tibet: Petrogenesis and Implications for India Intra-Continental Subduction beneath Southern Tibet. Lithos, 113(1-2): 190-212. https://doi.org/10.1016/j.lithos.2009.02.004 Zheng, Y. Y., Ci, Q., Gao, S. B., et al., 2021. The Ag-Sn-Cu Polymetallic Minerogenetic Series and Prospecting Direction in the Western Gangdese Belt, Tibet. Earth Science Frontiers, 28(3): 379-402(in Chinese with English abstract). Zheng, Y. Y., Gao, S. B., Zhang, D. Q., et al., 2006. The Discovery of the Zhunuo Porphyry Copper Deposit in Tibet and Its Significance. Earth Science Frontiers, 13(4): 233-239(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200604023.htm Zheng, Y. Y., Sun, X., Gao, S. B., et al., 2014a. Analysis of Stream Sediment Data for Exploring the Zhunuo Porphyry Cu Deposit, Southern Tibet. Journal of Geochemical Exploration, 143: 19-30. https://doi.org/10.1016/j.gexplo.2014.02.012 Zheng, Y. Y., Sun, X., Gao, S. B., et al., 2014b. Multiple Mineralization Events at the Jiru Porphyry Copper Deposit, Southern Tibet: Implications for Eocene and Miocene Magma Sources and Resource Potential. Journal of Asian Earth Sciences, 79: 842-857. https://doi.org/10.1016/J.JSEAES.2013.03.029 Zheng, Y. Y., Zhang, G. Y., Xu, R. K., et al., 2007. Geochronologic Constraints on Magmatic Intrusions and Mineralization of the Zhunuo Porphyry Copper Deposit in Gangdese, Tibet. Chinese Science Bulletin, 52(22): 3139-3147. https://doi.org/10.1007/s11434-007-0406-7 Zhu, D. C., Pan, G. T., Chung, S. L., et al., 2008. SHRIMP Zircon Age and Geochemical Constraints on the Origin of Lower Jurassic Volcanic Rocks from the Yeba Formation, Southern Gangdese, South Tibet. International Geology Review, 50(5): 442-471. https://doi.org/10.2747/0020-6814.50.5.442 Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2011. The Lhasa Terrane: Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 301(1/2): 241-255. https://doi.org/10.1016/j.epsl.2010.11.005 陈华勇, 张世涛, 初高彬, 等, 2019. 鄂东南矿集区典型矽卡岩-斑岩矿床蚀变矿物短波红外(SWIR)光谱研究与勘查应用. 岩石学报, 35(12): 3629-3643. 侯增谦, 郑远川, 卢占武, 等, 2020. 青藏高原巨厚地壳: 生长、加厚与演化. 地质学报, 94(10): 2797-2815. 黄倩, 吴松, 刘晓峰, 等, 2025. 西藏唐格矽卡岩型铜铅锌矿床成矿时代: 来自石榴子石U-Pb年龄的约束. 地球科学, 50(2): 621-638. doi: 10.3799/dqkx.2024.017 黄永高, 韩飞, 康志强, 等, 2024. 西藏南木林盆地林子宗群火山岩年代学和地球化学特征. 地球科学, 49(3): 822-836. doi: 10.3799/dqkx.2022.196 李家桢, 吴松, 林毅斌, 等, 2022. 西藏次玛班硕斑岩铜矿蚀变-矿化样式及找矿潜力. 地球科学, 47(6): 2219-2244. doi: 10.3799/dqkx.2021.229 吕凤军, 郝跃生, 石静, 等, 2009. ASTER遥感数据蚀变遥感异常提取研究. 地球学报, 30(2): 271-276. 孙祥, 郑有业, 吴松, 等, 2013. 冈底斯明则-程巴斑岩-夕卡岩型Mo-Cu矿床成矿时代与含矿岩石成因. 岩石学报, 29(4): 1392-1406. 杨金中, 方洪宾, 张玉君, 等, 2003. 中国西部重要成矿带遥感找矿异常提取的方法研究. 国土资源遥感, 15(3): 50-53. 赵亚云, 刘晓峰, 刘远超, 等, 2017. 西藏朱诺矿区外围次玛班硕地区铜成矿有利条件分析. 甘肃地质, 26(4): 28-36. 郑有业, 次琼, 高顺宝, 等, 2021. 西藏冈底斯西段银锡铜多金属成矿系列与找矿方向. 地学前缘, 28(3): 379-402. 郑有业, 高顺宝, 张大全, 等, 2006. 西藏朱诺斑岩铜矿床发现的重大意义及启示. 地学前缘, 13(4): 233-239. -