-
地质理论认识的突破和水平井钻完井及分段压裂技术的创新推动了美国页岩气产量快速增长(Curtis, 2002;张金川等,2004; Jarvie et al., 2007;李新景等, 2007, 2009;李欣等,2011;关小旭等,2014).在学习和借鉴美国页岩气开发经验的基础上,近年来我国在四川盆地率先实现了页岩气商业开发,奥陶系五峰组-志留系龙马溪组成为南方海相页岩气开发的主力层系.中石化继焦页1HF井实现20.30×104 m3/d的突破以来,截至2015年底累计产气超过25.00×108 m3,平均单井日产32.72×104 m3,累计提交探明储量3 805.98×108 m3,成为全球除北美之外最大的页岩气田;中石油在四川盆地长宁-威远共完成钻井92口,单井日平均测试产量超过14.30×104 m3/d,提交探明地质储量1 635.30×108 m3.除此之外,四川盆地外围也取得了重要发现,中石化在贵州习水的丁页2HF井压裂测试获日产10.52×104 m3的工业气流,有望成为继涪陵页岩气田之后的第二个页岩气商业开发基地;中标企业通过来页1井、保页1井、濯页1井、龙参2井等也获得了良好显示.中国地质调查局油气资源调查中心通过公益性地质调查,在四川盆地外围及滇黔桂地区也发现了良好的页岩气显示.笔者在系统梳理和总结南方海相龙马溪组页岩气沉积与分布特征、构造演化特征、构造样式及保存特征、页岩储层特征的基础上,提出了我国南方海相页岩气富集高产的主控因素,并预测了下一步页岩气勘探方向.
-
我国南方地区志留系页岩面积约53.42×104 km2,主要分为深水陆棚、浅水陆棚、潮坪-泻湖和滨岸-潮坪4个不同沉积相带,其中发育的上奥陶统五峰组-下志留统龙马溪组黑色、深灰色碳质、钙质页岩富含笔石和黄铁矿,主要形成于闭塞、半闭塞滞留环境下的深海陆棚,是一套很好的烃源岩(颜丹平等,2000;梁狄刚等,2009;董大忠等,2010;聂海宽等,2012;谭淋耘等,2015).晚奥陶世-早志留世,四川盆地东南缘为台内欠补偿盆地沉积,深水陆棚相发育大面积富有机质页岩.笔者通过焦页1、彭页1、威201、南页1、慈页1、丁页2HF等22口钻井资料对比研究发现,深水陆棚相主要分布在川中、黔中、雪峰古隆所围限坳陷的中心部位,川南长宁-威远和川东涪陵都位于深水陆棚的沉积中心,龙马溪组页岩厚度在80 m以上(图 1).
-
很多专家学者对我国南方海相页岩气富集条件和成藏主控因素进行了研究,提出了页岩气“二元富集”等成藏主控理论(张金川等,2008;聂海宽等,2009;王社教等,2009;张金川等,2009;邹才能等,2010;陈尚斌等,2011;蒋成平等,2011;郭旭升等,2012;聂海宽等,2012;王社教等,2012;张旭等,2013;郭彤楼等,2014;郭旭升,2014;李湘涛等,2014;刘竞等,2014;王红岩等,2015;张晓明等,2015).勘探证实深水陆棚相优质页岩的主要特征体现在:一是强还原沉积环境,浮游生物繁盛,有利于有机质的富集和保存,因而TOC含量高,焦石坝地区的深水陆棚相泥页岩储层包括含放射虫碳质笔石页岩、含骨针放射虫碳质笔石页岩、含碳质笔石页岩3种岩石类型(图 2);二是优质页岩段硅质含量高,以富含骨针、放射虫和笔石页岩为主,从上到下硅质矿物含量逐渐增加,与TOC含量呈很好的正相关关系;三是有机质孔发育(图 3),有机质孔与含气量呈明显正相关关系.涪陵地区优质页岩层段以有机质孔为主,有机质孔与粘土矿物孔对孔隙度贡献大,占总孔隙的90%左右(魏志红和魏祥峰,2014),有机质孔具有亲油(气)性、疏水性,良好的储集空间为页岩气的储存提供了条件.
图 2 五峰-龙马溪组沉积微相及笔石发育特征
Figure 2. Sedimentary microfacies and graptolite development characteristics of Wufeng Formation-Longmaxi Formation
焦石坝地区的优质页岩层段判别结果表明其具有“高TOC、高孔隙度、高含气量、高硅质”的四高特征:焦页1井TOC最大值为7.13%,平均值为2.65%;孔隙度为1.17%~8.61%,平均值为4.87%;含气量最大值为8.84 m3/t,平均值为3.82 m3/t;脆性矿物以硅质为主,平均含量为59.10%.测井曲线则体现出“高声波时差、高电阻率、高铀(U)”和“低密度(DEN)、低中子、低无铀伽马”的“三高三低”特征(图 4),这已成为识别龙马溪组优质页岩的主要依据.中石油长宁-威远地区龙马溪组优质烃源岩的测井曲线也是通过高铀含量、标准伽马(GR)与无铀伽马间差值大、密度值低的特征来识别主力产层优质页岩.因此,测井曲线上的高伽马、高电阻率、低密度的特征是识别优质页岩段的重要依据.
-
我国南方海相页岩在厚度、有机质丰度、储集物性、可压性等方面与北美相似,但与北美相对稳定的构造相比,我国南方大陆经历了多期构造运动的叠加改造,构造隆升剥蚀强烈,断裂极其发育,导致页岩气保存条件复杂.
四川盆地及周缘磷灰石裂变年龄显示,江南雪峰山隆起大约从200 Ma开始由盆外向盆内逐渐隆升,至100 Ma左右结束,构造挤压、抬升和剥蚀等作用形成了武陵山地区的复杂褶皱带,也导致了龙马溪组被抬升剥蚀而保存条件变差(图 5).图 6显示,Ro>0.5%时干酪根开始热解生油气;当1.0%<Ro<1.3%,大约在200 Ma,干酪根进入晚成熟阶段;当Ro<2.6%,约100 Ma,有机质干酪根处于生干气阶段,而后期则开始构造抬升.焦页1井和彭页1井的沉积埋藏史显示,焦页1井大约在100 Ma开始构造抬升,在此之前的沉积埋藏过程中已达到干气生成阶段,即抬升是在生烃之后开始的;而彭页1井大约在160 Ma就开始了构造抬升,此时还未达到生干气阶段,即抬升是在生烃之前就开始,因此后期的构造抬升造成了气体的散失,保存条件变差.
图 5 四川盆地及周缘构造纲要(a)及磷灰石裂变年龄演化(b)
Figure 5. Tectonic outline (a) and age distribution based on apatite fission track (b) in the Sichuan basin and adjacent area
图 6 焦页1井和彭页1井生气及沉积埋藏史模拟
Figure 6. The gas generating and depositional and burial history of well JY1 and well PY1
构造作用的强度与时间控制了页岩气逸散方式、程度及残留丰度.抬升剥蚀作用破坏了区域盖层的完整性及封盖性能,还导致地层围压降低,改变了页岩层系的温压场,岩石发生剪切破裂,封闭性降低.构造强度越大、抬升剥蚀越严重、构造活动时间越长,对气藏破坏越严重.
-
勘探证实构造样式直接影响页岩气的保存效果,胡东风等(2014)通过全直径岩心分析发现页岩水平渗透率是垂直渗透率的2~8倍,因此页岩气水平方向的扩散比垂向扩散更强,页岩气更容易顺层散失,当深埋地下的页岩地层出现侧向出露或与开启性断层接触时,容易发生气体的顺层散失.笔者总结了我国南方不同地区大致有以下3种类型的构造样式.
一是完整型.以四川盆地南部富顺-永川区块高寺简单背斜构造控藏和涪陵焦石坝逆断背斜构造控藏为代表,其区域盖层完整、埋深多大于2 000 m、目的层顶底板条件良好、远离开启性断裂和剥蚀区及缺失区,气体逸散破坏时间短,往往地层压力系数高,可获得高产商业性页岩气.如焦页1井位于一个相对稳定的箱式断背斜构造之上,上覆地层为三叠系,目的层五峰-龙马溪组的顶底板地层都是相对致密的粉砂质泥岩或灰岩,有利于页岩气保存.而构造相对稳定区的断裂发育会影响页岩气聚集保存,笔者对比丁页1井和丁页2井的构造剖面发现,由于丁页1井离齐岳山断裂更近,造成气体部分侧向逸失更多,后期压裂产量仅有3.4×104 m3,而远离断层的丁页2井产量达到10.2×104 m3(图 7).
二是残留型.以重庆彭水桑柘坪残留向斜、鄂西黄陵基底隆起背斜和贵州安场逆断向斜构造控藏为代表,其自身封盖作用、顶底板条件良好,但断裂及高角度缝发育或者距剥蚀区、缺失区较近,页岩气经历了较长时间逸散而丰度降低,仅残存部分页岩气,但随着埋深加大、高角度缝减少、相对远离散失指向区,页岩气的保存依然较为有效,或者逆断层的封闭隔挡作用使得在逆断层的下盘往往形成良好的保存条件.
彭水区块的残留向斜由于构造抬升、翼部出露遭受剥蚀,导致了气体向翼部逸散,地层压力系数变低.彭页1井距剥蚀区较近,而彭页3井位于向斜轴部,埋藏较深,压后产量为3.5×104 m3/d而彭页1井仅为2.5×104 m3/d(图 7).又如宁201井和宁203井,位于同一个构造残留向斜,位于向斜翼部的相对较浅的宁203井压后产量较埋藏较深的宁201井低;同样地,威201井和威202井同位于构造抬升背斜,但威202井距离地层缺失区相对较远,其压裂效果明显好于威201井.因此在这种散失残留型构造区,应以寻找相对远离散失区、埋藏较深的相对保存条件较好的区块为勘探目标.
贵州安场向斜核部目的层盖层发育齐全,翼部虽然被剥蚀,但由于逆断层的发育,对页岩气聚集起到了良好的封闭隔挡作用,因此在逆断层下盘的裂缝、微孔隙等储集空间中富集了以游离气为主的页岩气.而鄂西黄陵背斜主要形成于东侧雪峰古陆的隆起,隆起顶部的目的层已被剥蚀,局部裸露,构造形态呈环状,隆起周边的目的层埋藏较浅,热演化程度适中,构造变形相对较弱,秭归地区的调查井已证实了震旦系和寒武系古老地层中的页岩气保存条件较好.
三是破坏型.储层自身封盖顶底板条件较差,构造断裂破坏作用强,经历了长时间、大规模的散失,保存条件遭到完全破坏,几乎无法取得油气发现.这种地区的气体散失是由于一方面复杂断层、裂缝的发育,另一方面是地层后期遭受抬升剥蚀;或者储层顶底板条件差,页岩气向上或向下方散失,整体勘探效果较差.如早期勘探的昭201井由于剥蚀出露、气体逸散,地层压力系数仅为0.8,且与上部大气层沟通导致氮气含量高;渝页1井也是由于目的层出露,无盖层封盖,气体逸散导致含气量低;方深1井则位于大的通天断层附近,气体沿断层逸散导致后期压裂产量低(图 7).
我国南方由于构造作用破坏大,因此在后期的勘探中应尽力寻找构造相对稳定区,尽量远离断裂,选择埋藏较深、上覆盖层较好、顶底板条件较好的有利区进行钻探.
-
龙马溪组页岩的勘探实践表明,页岩气保存条件是影响最终产量的关键因素.目前的勘探开发实践表明,地层压力系数是反映一个地区构造保存条件好坏的重要参数,地层压力系数高,有利于页岩气聚集和保存,后期改造效果好.笔者统计了长宁-威远、涪陵、彭水、南川、龙山和保靖等区块的大量钻井地层压力系数与产量数据(表 1),并做相关性分析发现,对同一个地区来说,地层压力系数越高,压后产量普遍较高,地层压力系数与产量呈较好的正相关关系(图 8).地层压力系数大于1的超压地层往往反映了地层的保存条件较好,压后产量也高,而对于压力系数等于1或小于1的常压或低压地层,往往是经历了页岩气散失后遗留的部分,压后产量相对较低.在相同地层压力系数下,焦石坝和长宁-威远等不同地区的页岩气井产量并不同(图 8),笔者分析认为压后产量还受储层地质条件、水平井穿行轨迹、水平井段长度和后期改造工艺等其他因素的影响,因此地层压力系数与产量的正相关性只适用于同一个地区.
井号 压力系数 产量(104·m3·d-1) 焦页1HF 1.45 20.3 焦页27-1 1.45 34.3 焦页27-2 1.47 26.1 焦页27-3 1.54 33.5 焦页27-4 1.54 37.5 焦页29-1 1.63 35.6 焦页20-1 1.46 31.4 焦页20-2 1.49 34.8 焦页3-2 1.47 23.8 焦页3-3 0.97 14.5 焦页16-3 1.28 14.1 焦页29-3 1.51 31.8 焦页29-4 1.55 41.4 DY2HF 1.60 10.5 彭页1HF 0.96 2.3 彭页3HF 0.96 3.2 彭页4HF 0.94 1.7 南页1HF 1.50 0.2 威201-H1 0.92 1.3 威201 0.92 0.3 威202 1.40 2.8 威204 1.96 16.5 宁201-H1 2.03 15.0 长宁H2-1 1.79 8.0 长宁H2-2 1.58 21.0 长宁H2-3 1.62 8.3 长宁H2-4 1.60 13.4 长宁H3-1 1.93 7.7 长宁H3-2 1.92 7.7 长宁H3-3 1.96 5.6 阳201-H2 2.20 43.0 YSH1-1 1.15 3.6 YS108H1-1 2.00 20.7 保页1井 1.00 0.2 龙参2井 1.00 0.2 昭101 0.80 微含气 表 1 四川盆地及周缘典型页岩气井的压力系数与产量
Table 1. The pressure coefficient and production of shale gas well in the Sichuan basin and adjacent area
-
涪陵焦石坝和长宁-威远等地区的勘探突破已证实四川盆地具备良好的页岩气成藏地质条件,通过寻找相对有利的构造保存区即可实现页岩气产量的突破.而四川盆地外围通过近几年的勘探却一直没有取得大的突破,特别是其页岩气招标区块,一系列的钻井均未取得产量突破,笔者分析主要原因还是构造保存条件的破坏,地层压力系数低,页岩气大部分已散失.
张明正等(2016)通过对秭归地区震旦系陡山沱组碳酸盐岩结合成因研究认识对在震旦系陡山沱组寻找页岩气提供了重要地质依据.油气调查中心近几年的页岩气资源调查表明,我国南方古老隆起边缘和滇黔桂地区具备页岩气成藏的有利条件,在四川盆地外围的黄陵背斜秭归地区以及汉中古隆起南缘的镇巴地区都有良好发现(图 9).在秭地1井钻遇了下寒武统牛蹄塘组(262.0~362.0 m,厚100 m)和震旦系陡山沱组(681.0~826.0 m,厚145 m),含气量达2~4 m3/t,点火获得成功;宜地2井在钻遇天河板组时发生了气体井喷.在镇地1井钻遇高含气黑色牛蹄塘组页岩累计厚度达90米,现场解析气量高达2.9 m3/t(不含损失气和残余气),达到工业开发标准.在黔南古隆起东北岑巩区块部署的天星1井,钻遇厚度达76 m的含气性好的牛蹄塘组,压后产量约为1 500 m3/t.笔者分析认为古隆起边缘构造相对稳定,有机质热演化程度较低,使得震旦系和寒武系古老地层中的页岩气得以生成和保存富集.
图 9 我国南方古隆起边缘页岩气有利区划分
Figure 9. Illustration of favorable shale gas zone selected in periphery of paleo-uplift in southern China
滇黔桂地区主要发育下寒武统、石炭系、二叠系3套区域烃源岩,发育震旦系、泥盆系、石炭系和三叠系4套局部性烃源岩,页岩气勘查开发前景良好.广西地区桂中、桂北、桂西南盘江坳陷晚古生代地层页岩气资源潜力巨大.桂中坳陷发育下石炭统岩关组、上泥盆统榴江组、中泥盆统罗富组等多套黑色页岩,厚度大,有机质丰度较高.云南也具有良好的页岩气勘探前景,如昭通地区实施的昭104井钻遇下志留统龙马溪组富有机质页岩厚度达165 m,经压裂试气后获重要突破,与威远区块基本相当;昭101井、昭104井、曲地7井、ZK2井等多口钻井钻遇下寒武统筇竹寺组富有机质页岩,厚度均大于200 m.黔南地区的下寒武统牛蹄塘组(渣拉沟组∈1n)、下石炭统打屋坝组(祥摆组)(C1dw)及上二叠统龙潭组(P3l)是主要的含气页岩层系,其次,中泥盆统火烘组(D2h)和下二叠统龙吟组(P1l)局部也发育黑色页岩.滇黔桂地区台盆相间的沉积相和后期复杂构造运动,造成了现今地表构造与地下真实的构造往往不一致,增加了勘探难度.
-
近几年我国页岩气产业快速发展,成为除美国和加拿大之外的第三个实现商业化开发的国家,并发现了除北美之外的最大的涪陵焦石坝页岩气田,但还是应该看到我国的页岩气勘查开发仍面临很多困难和难题,需要进一步研究攻关.
(1) 不同类型页岩气富集机理还需深化研究.目前对我国南方高演化和复杂构造区海相页岩气赋存机理与富集规律有一定的认识,初步摸清了四川盆地内海相龙马溪组页岩气富集规律和主控因素,但依然需要加强认识,盆地外围复杂构造区的页岩气富集高产主控因素仍需通过勘探实践验证;另外还缺乏对海陆交互相“三气”和低演化陆相页岩油气赋存机理与富集规律的认识,需进一步加大基础地质理论的研究.
(2) 我国南方下寒武统牛蹄塘组和震旦系陡山沱组页岩分布广、厚度大、成熟度高,有一定的含气性,但热演化程度高、构造破坏强,勘探难度较大,而古隆起边缘震旦系和寒武系古老地层仍具备良好的勘探前景,可通过“高中找低、强中找弱”优选有利区.
(3) 滇黔桂地区泥盆系、石炭系页岩气地质条件较好,有望成为第二个页岩气突破领域.泥盆系、石炭系海相页岩富含竹节虫化石,与北美地区的泥盆系、石炭系为同时代地层,具备页岩气富集的形成基础,但其受台盆复杂沉积相带的控制,因此,寻求盆地相稳定构造区是该区选择页岩气勘探有利区的首要条件.
Major Factors Controlling the Accumulation and High Productivity of Marine Shale Gas and Prospect Forecast in Southern China
-
摘要: 近年来我国在四川盆地率先实现了页岩气商业开发,奥陶系五峰组-志留系龙马溪组成为南方海相页岩气开发的主力层系.通过梳理页岩气沉积与分布特征、构造演化特征、构造样式及保存特征、页岩储层特征,提出了我国南方海相页岩气富集高产的主控因素:深水陆棚相富有机质优质页岩是物质基础;构造抬升时间和构造样式是页岩气富集保存的关键因素,总结了构造保存完整型、残留型、破坏型3大类页岩气构造样式;地层超压是页岩气高产的必要条件.最终展望了页岩气发展前景,预测了我国南方几个古隆起的边缘和滇黔桂地区是未来页岩气勘探开发的有利区.Abstract: Sichuan basin has been taking the lead in China for the shale gas business development in recent years. Ordovician Wufeng Formation-Silurian Longmaxi Formation has been the main layer of marine shale gas development in the south. Based on the analysis of shale gas deposition and distribution, tectonic evolution, tectonic patterns and preservation, shale reservoir characteristics, the main controlling factors on enrichment and high-production of marine shale gas are summarized. The rich organic shale formed in deep shelf sedimentary environment is taken of the main factor as the material basis. The time and style of tectonic uplift are the key factors of shale gas accumulation and preservation. Three types of shale gas tectonic styles are determined, including intact type, residual type and destructive type. Overpressure of formation is a necessary condition of high shale gas production. In this paper the prospect of shale gas in South China has been forecasted. Edges of paleo-highs and Yunnan-Guizhou-Guangxi region are predicted as the favorable areas for future exploration and development of shale gas.
-
Key words:
- shale gas /
- enrichment /
- high-production /
- main controlling factor /
- tectonic style /
- storage conditions /
- petroleum geology
-
表 1 四川盆地及周缘典型页岩气井的压力系数与产量
Table 1. The pressure coefficient and production of shale gas well in the Sichuan basin and adjacent area
井号 压力系数 产量(104·m3·d-1) 焦页1HF 1.45 20.3 焦页27-1 1.45 34.3 焦页27-2 1.47 26.1 焦页27-3 1.54 33.5 焦页27-4 1.54 37.5 焦页29-1 1.63 35.6 焦页20-1 1.46 31.4 焦页20-2 1.49 34.8 焦页3-2 1.47 23.8 焦页3-3 0.97 14.5 焦页16-3 1.28 14.1 焦页29-3 1.51 31.8 焦页29-4 1.55 41.4 DY2HF 1.60 10.5 彭页1HF 0.96 2.3 彭页3HF 0.96 3.2 彭页4HF 0.94 1.7 南页1HF 1.50 0.2 威201-H1 0.92 1.3 威201 0.92 0.3 威202 1.40 2.8 威204 1.96 16.5 宁201-H1 2.03 15.0 长宁H2-1 1.79 8.0 长宁H2-2 1.58 21.0 长宁H2-3 1.62 8.3 长宁H2-4 1.60 13.4 长宁H3-1 1.93 7.7 长宁H3-2 1.92 7.7 长宁H3-3 1.96 5.6 阳201-H2 2.20 43.0 YSH1-1 1.15 3.6 YS108H1-1 2.00 20.7 保页1井 1.00 0.2 龙参2井 1.00 0.2 昭101 0.80 微含气 -
[1] Chen, S.B., Zhu, Y.M., Wang, H.Y., et al., 2011.Characteristics and Significance of Mineral Compositions of Lower Silurian Longmaxi Formation Shale Gas Reservoir in the Southern Margin of Sichuan Basin.Acta Petrolei Sinica, 32(5):775-782 (in Chinese with English abstract). http://d.g.wanfangdata.com.cn/Periodical_syxb201105006.aspx [2] Curtis, J.B., 2002.Fractured Shale-Gas Systems.AAPG Bulletin, 86:1921-1938.doi: 10.1306/61eeddbe-173e-11d7-8645000102c1865d [3] Dong, D.Z., Cheng, K.M., Wang, Y.M., et al., 2010.Forming Conditions and Characteristics of Shale Gas in the Lower Paleozoic of the Upper Yangtze Region, China.Oil & Gas Geology, 31(3):288-299, 308 (in Chinese with English abstract). https://www.researchgate.net/publication/284617068_Forming_conditions_and_characteristics_of_shale_gas_in_the_Lower_Paleozoic_of_the_Upper_Yangtze_region_China [4] Guan, X.X., Yi, X.Y., Yang, H.H., 2014.Contrast of Shale Gas Reservoir Conditions in China and the United States.Journal of Southwest Petroleum University (Science & Technology Edition), 36(5):33-39 (in Chinese with English abstract). https://www.researchgate.net/publication/281750200_Contrast_of_shale_gas_reservoir_conditions_in_China_and_the_United_States [5] Guo, T.L., Zhang, H.R., 2014.Formation and Enrichment Mode of Jiaoshiba Shale Gas Field, Sichuan Basin.Petroleum Exploration and Development, 41(1):28-36 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK201401003.htm [6] Guo, X.S., 2014.Rules of Two-Factor Enrichment for Marine Shale Gas in Southern China-Understanding from the Longmaxi Formation Shale Gas in Sichuan Basin and Its Surrounding Area.Acta Petrolei Sinica, 88(7):1209-1218 (in Chinese with English abstract). https://www.researchgate.net/publication/308340530_Formation_and_destruction_mechanism_as_well_as_major_controlling_factors_of_the_Silurian_shale_gas_overpressure_in_the_Sichuan_Basin_China [7] Guo, X.S., Guo, T.L., Wei, Z.H., et al., 2012.Thoughts on Shale Gas Exploration in Southern China.Engineering Sciences, 14(6):101-105, 112 (in Chinese with English abstract). [8] Hu, D.F, Zhang, H.R, Ni, K., et al., 2014.Main Controlling Factors for Gas Preservation Conditions of Marine Shale in Southeastern Margins of the Sichuan Basin.Natural Gas Industry, 34(6):17-23 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRQG201406003.htm [9] Jarvie, D.M., Hill, R.J., Ruble, T.E., et al., 2007.Unconventional Shale-Gas Systems:The Mississippian Barnett Shale of North-Central Texas as One Model for Thermogenic Shale-Gas Assessment.AAPG Bulletin, 91(4):475-499.doi: 10.1306/12190606068 [10] Jiang, C.P., Lei, Y.J., Gong, J., et al., 2011.Shale Gas Accumulation Conditions and Distribution and Prospect in China.Inner Mongolia Petrochemical Industry, 18:133-135 (in Chinesewith English abstract). [11] Li, X., Duan, S.K., Sun, Y., et al., 2011.Advances in the Exploration and Development of U.S. Shale Gas.Nature Gas Industry, 31(8):124-126 (in Chinese with English abstract). https://www.researchgate.net/publication/295960302_Advances_in_the_exploration_and_development_of_US_shale_gas [12] Li, X.J., Hu, S.Y., Cheng, K.M., 2007.Suggestions from the Development of Fractured Shale Gas in North America.Petroleum Exploration and Development, 34(4):392-400 (in Chinese with English abstract). https://www.researchgate.net/publication/279937654_Suggestions_from_the_development_of_fractured_shale_gas_in_North_America [13] Li, X.J., Lu, Z.G., Dong, D.Z., et al., 2009.Geologic Controls on Accumulation of Shale Gas in North America.Natural Gas Industry, 29(5):27-32 (in Chinese with English abstract). https://www.researchgate.net/publication/281392655_Geologic_controls_on_accumulation_of_shale_gas_in_North_America [14] Li, X.T., Shi, W.R., Guo, M.Y., et al., 2014.Characteristics of Marine Shale Gas Reservoirs in Jiaoshiba Area of Fuling Shale Gas Field.Journal of Oil and Gas Technology, 36(11):11-15 (in Chinese with English abstract). https://www.researchgate.net/publication/303145539_Characteristics_of_marine_shale_gas_reservoirs_in_Jiaoshiba_area_of_Fulin_shale_gas_field [15] Liang, D.G., Guo, T.L., Chen, J.P, et al., 2009.Some Progresses on Studies of Hydrocarbon Generation and Accumulation in Marine Sedimentary Regions, Southern China (Part 3):Controlling Factors on the Sedimentary Facies and Development of Palaeozoic Marine Source Rocks.Marine Origin Petroleum Geology, 14(2):1-19 (in Chinese with English abstract). [16] Liu, J., Xu, H.T., Yu, G., et al., 2014.Development Indices and Potential of Shale Gas, Sichuan Basin.Natural Gas Exploration & Development, 37(2):45-47, 52 (in Chinese with English abstract). [17] Nie, H.K., Tang, X., Bian, R.K., 2009.Controlling Factors for Shale Gas Accumulation and Prediction of Potential Development Area in Shale Gas Reservoir of South China.Acta Petrolei Sinica, 30(4):484-491 (in Chinese with English abstract). https://www.researchgate.net/publication/279571586_Controlling_Factors_for_Shale_Gas_Accumulation_and_Prediction_of_Potential_Development_Area_in_Shale_Gas_Reservoir_of_South_ChinaJ [18] Nie, H.K., Zhang, J.C., Bao, S.J., et al., 2012.Shale Gas Accumulation Conditions of the Upper Ordovician-Lower Silurian in Sichuan Basin and Its Periphery.Oil & Gas Geology, 33(3):335-345 (in Chinese with English abstract). [19] Tan, L.Y., Xu, Y., Li, D.H., et al., 2015.Geological Condition of Shale Gas Accumulation and Favorable Area Prediction for the Wufeng-Longmaxi Formations in Southeastern Chongqing.Acta Geologica Sinica, 89(7):1308-1317 (in Chinese with English abstract). [20] Wang, H.Y., Guo, W., Liang, F., et al., 2015.Biostratigraphy Characteristics and Scientific Meaning of the Wufeng and Longmaxi Formation Black Shales at Well Wei 202 of the Weiyuan Shale Gas Field, Sichuan Basin.Journal of Stratigraphy, 39(3):289-293 (in Chinese with English abstract). [21] Wang, S.J., Wang, L.S., Huang, J.L., et al., 2009.Accumulation Conditions of Shale Gas Reservoirs in Silurian of the Upper Yangtze Region.Natural Gas Industry, 29(5):45-50, 137 (in Chinese with English abstract). https://www.researchgate.net/publication/284098473_Accumulation_conditions_of_shale_gas_reservoirs_in_Silurian_of_the_Upper_Yangtze_region [22] Wang, S.J., Yang, T., Zhang, G.S., et al., 2012.Shale Gas Enrichment Factors and the Selection and Evaluation of the Core Area.Engineering Sciences, 14(6):94-100 (in Chinese with English abstract). [23] Wei, Z.H, Wei, X.F.2014.Comparision of Gas Bearing Property Between Different Pore Types of Shale:A Case from the Upper Ordovician Wufeng and Longmaxi Fms in the Jiaoshiba Area, Sichuan Basin.Natural Gas Industry, 34(6):37-41 (in Chinese with English abstract). https://www.researchgate.net/publication/286395667_Comparison_of_gas-bearing_property_between_different_pore_types_of_shale_A_case_from_the_Upper_Ordovician_Wufeng_and_Longmaxi_Fms_in_the_Jiaoshiba_area_Sichuan_Basin [24] Yan, D.P., Wang, X.W, Liu, Y.Y., 2000.Analysis of Fold Style and Its Formation Mechanism in the Area of Boundary among Sichuan, Hubei and Hunan.Geoscience, 14(1):37-43 (in Chinese with English abstract). https://www.researchgate.net/publication/307557663_Analysis_of_fold_style_and_its_formation_mechanism_in_the_area_of_boundary_among_Sichuan_Hubei_and_Hunan [25] Zhang, J.C., Jiang, S.L., Tang, X., et al., 2009.Accumulation Types and Resources Characteristics of Shale Gas in China.Natural Gas Industry, 29(12):109-114 (in Chinese with English abstract). [26] Zhang, J.C., Jin, Z.J., Yuan, M.S., 2004.Reservoiring Mechanism of Shale Gas and Its Distribution.Natural Gas Industry, 24(7):15-18 (in Chinese with English abstract). https://www.researchgate.net/publication/303636775_Reservoiring_mechanism_of_shale_gas_and_its_distribution [27] Zhang, J.C., Nie, H.K., Xu, B., et al., 2008.Geological Condition of Shale Gas Accumulation in Sichuan Basin.Natural Gas Industry, 28(2):151-156 (in Chinese with English abstract). [28] Zhang, M., Z., Peng, S.B., Zhang, L., et al., 2016.New Rocognition of Carbonate Nodules Genesis in Sinian Doushantuo Formation in Zigui Area and Its Geological Implication.Earth Science, 41(12):1977-1994 (in Chinese with English abstract). https://www.researchgate.net/publication/312128271_New_recognition_of_carbonate_nodules_genesis_in_sinian_doushantuo_formation_in_zigui_area_and_its_geological_implication [29] Zhang, X., Jiang, T.X., Jia, C.G., et al., 2013.Physical Simulation of Hydraulic Fracturing of Shale Gas Reservoir.Petroleum Drilling Techniques, 41(2):70-74 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYZT201302016.htm [30] Zhang, X.M., Shi, W.Z., Xu, Q.H., et al., 2015.Reservoir Characteristics and Controlling Factors of Shale Gas in Jiaoshiba Area, Sichuan Basin.Acta Petrolei Sinica, 36(8):926-939 (in Chinese with English abstract). https://www.researchgate.net/publication/283092654_Reservoir_characteristics_and_controlling_factors_of_shale_gas_in_Jiaoshiba_area_Sichuan_Basin [31] Zou, C.N., Dong, D.Z., Wang, S.J., et al., 2010.Geological Characteristics, Formation Mechanism and Resource Potential of Shale Gas in China.Petroleum Exploration and Development, 37(6):641-653 (in Chinese with English abstract). doi: 10.1016/S1876-3804(11)60001-3 [32] 陈尚斌, 朱炎铭, 王红岩, 等, 2011.四川盆地南缘下志留统龙马溪组页岩气储层矿物成分特征及意义.石油学报, 32(5): 775-782. doi: 10.7623/syxb201105006 [33] 董大忠, 程克明, 王玉满, 等, 2010.中国上扬子区下古生界页岩气形成条件及特征.石油与天然气地质, 31(3): 288-299, 308. doi: 10.11743/ogg20100304 [34] 关小旭, 伊向艺, 杨火海, 2014.中美页岩气储层条件对比.西南石油大学学报(自然科学版), 36(5): 33-39. doi: 10.11885/j.issn.1674-5086.2013.12.05.01 [35] 郭彤楼, 张汉荣, 2014.四川盆地焦石坝页岩气田形成与富集高产模式.石油勘探与开发, 41(1): 28-36. doi: 10.11698/PED.2014.01.03 [36] 郭旭升, 2014.南方海相页岩气"二元富集"规律——四川盆地及周缘龙马溪组页岩气勘探实践认识.地质学报, 88(7): 1209-1218. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201407001.htm [37] 郭旭升, 郭彤楼, 魏志红, 等, 2012.中国南方页岩气勘探评价的几点思考.中国工程科学, 14(6): 101-105, 112. http://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201206013.htm [38] 胡东风, 张汉荣, 倪楷, 等, 2014.四川盆地东南缘海相页岩气保存条件及主控因素.天然气工业, 34(6): 17-23. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201406003.htm [39] 蒋成平, 雷应金, 龚进, 等, 2011.页岩气成藏条件及我国页岩气分布与前景.内蒙古石油化工, 18: 133-135. doi: 10.3969/j.issn.1006-7981.2011.14.054 [40] 李欣, 段胜楷, 孙扬, 等, 2011.美国页岩气勘探开发最新进展.天然气工业, 31(8): 124-126. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201108037.htm [41] 李新景, 胡素云, 程克明, 2007.北美裂缝性页岩气勘探开发的启示.石油勘探与开发, 34(4): 392-400. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200704003.htm [42] 李新景, 吕宗刚, 董大忠, 等, 2009.北美页岩气资源形成的地质条件.天然气工业, 29(5): 27-32. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200905006.htm [43] 李湘涛, 石文睿, 郭美瑜, 等, 2014.涪陵页岩气田焦石坝区海相页岩气层特征研究.石油天然气学报, 36(11): 11-15. doi: 10.3969/j.issn.1000-9752.2014.11.004 [44] 梁狄刚, 郭彤楼, 陈建平, 等, 2009.中国南方海相生烃成藏研究的若干新进展(三)南方四套区域性海相烃源岩的沉积相及发育的控制因素.海相油气地质, 14(2): 1-19. http://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ200902003.htm [45] 刘竞, 徐海棠, 余果, 等, 2014.四川盆地页岩气开发指标与开发潜力分析.天然气勘探与开发, 37(2): 45-47, 52. http://www.cnki.com.cn/Article/CJFDTOTAL-TRKT201402011.htm [46] 聂海宽, 唐玄, 边瑞康, 2009.页岩气成藏控制因素及中国南方页岩气发育有利区预测.石油学报, 30(4): 484-491. doi: 10.7623/syxb200904002 [47] 聂海宽, 张金川, 包书景, 等, 2012.四川盆地及其周缘上奥陶统-下志留统页岩气聚集条件.石油与天然气地质, 33(3): 335-345. doi: 10.11743/ogg20120302 [48] 谭淋耘, 徐铫, 李大华, 等, 2015.渝东南地区五峰组——龙马溪组页岩气成藏地质条件与有利区预测.地质学报, 89(7): 1308-1317. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201507013.htm [49] 王红岩, 郭伟, 梁峰, 等, 2015.四川盆地威远页岩气田五峰组和龙马溪组黑色页岩生物地层特征与意义.地层学杂志, 39(3): 289-293. http://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201503006.htm [50] 王社教, 王兰生, 黄金亮, 等, 2009.上扬子区志留系页岩气成藏条件.天然气工业, 29(5): 45-50, 137. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201106012.htm [51] 王社教, 杨涛, 张国生, 等, 2012.页岩气主要富集因素与核心区选择及评价.中国工程科学, 14(6): 94-100. http://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201206012.htm [52] 魏志红, 魏祥峰, 2014.页岩不同类型孔隙的含气性差异——以四川盆地焦石坝地区五峰组-龙马溪组为例.天然气工业, 34(6): 37-41. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201406007.htm [53] 颜丹平, 汪新文, 刘友元, 2000.川鄂湘边区褶皱构造样式及其成因机制分析.现代地质, 14(1): 37-43. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200001007.htm [54] 张金川, 姜生玲, 唐玄, 等, 2009.我国页岩气富集类型及资源特点.天然气工业, 29(12): 109-114. doi: 10.3787/j.issn.1000-0976.2009.12.033 [55] 张金川, 金之钧, 袁明生, 2004.页岩气成藏机理和分布.天然气工业, 24(7): 15-18. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200407004.htm [56] 张金川, 聂海宽, 徐波, 等, 2008.四川盆地页岩气成藏地质条件.天然气工业, 28(2): 151-156. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200802057.htm [57] 张明正, 彭松柏, 张利, 等, 2016.秭归地区震旦系陡山沱组碳酸盐岩结核成因新认识及其地质意义.地球科学, 41(12): 1977-1994. http://www.earth-science.net/WebPage/Article.aspx?id=3395 [58] 张旭, 蒋廷学, 贾长贵, 等, 2013.页岩气储层水力压裂物理模拟试验研究.石油钻探技术, 41(2): 70-74. http://cdmd.cnki.com.cn/Article/CDMD-10491-1014340965.htm [59] 张晓明, 石万忠, 徐清海, 等, 2015.四川盆地焦石坝地区页岩气储层特征及控制因素.石油学报, 36(8): 926-939. doi: 10.7623/syxb201508004 [60] 邹才能, 董大忠, 王社教, 等, 2010.中国页岩气形成机理、地质特征及资源潜力.石油勘探与开发, 37(6): 641-653. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201006003.htm -