Comparison of Salt Structure Deformation Periods of Conjugated Salt Basins in Central Segment of South Atlantic
-
摘要: 南大西洋中段被动陆缘含盐盆地群是全球油气储量快速增长的地区,阿普特阶盐岩的分布及构造变形对该区油气成藏产生了重要影响.在前人地震及重磁资料基础上,沿热刺转换断裂带选取圣埃斯皮里图和宽扎这组典型共轭盐盆,平面上在Gplates软件中叠合布格重力异常数据进行板块构造重建,剖面上应用Move软件进行平衡恢复,根据反演结果设计正演模型,进行物理模拟对比实验.在重力滑脱及重力扩展作用下,盆地内形成了伸展-过渡-挤压的盐构造分带,而底板斜坡倾角、基底伸展量、前缘阻挡、盐上沉积载荷及同沉积速率等因素,造成了共轭盆地间盐构造变形过程的差异性.盐构造变形过程可分为盐构造初期变形阶段(阿普特期-阿尔比早期)和盐构造继承性发育阶段(两期,阿尔比晚期-古近纪早期和古近纪晚期-现今):(1)阿普特期-阿尔比早期,圣埃斯皮里图和宽扎盆地初始为统一盐盆,盐盆东侧强烈伸展,形成伸展区断裂及盐筏,同时盐盆逐渐一分为二并形成外部高地带,盐岩重力变形逐渐减慢.(2)阿尔比晚期-古近纪早期,圣埃斯皮里图盆地外部高地带继承性隆起,盐岩垂向上浮迁移;宽扎盆地厚层盐高原隆起,盐岩越过外部高地带形成逆冲推覆体.(3)古近纪晚期-现今,圣埃斯皮里图盆地基底稳定热沉降,盐构造继承性发育,整个盆地盐岩呈现垂向迁移特征;宽扎盆地靠陆端基底一定规模构造抬升,盐岩向海运输重建,伸展区盐筏进一步发育成盐滚,过渡区及挤压区盐底辟持续上拱,逆冲推覆体继续发育并在盐上层形成大量断裂及褶皱,整个盆地盐岩不断向坡下聚集且构造分带性明显.Abstract: The passive-margin salt basins in the central segment of the South Atlantic are areas with rapid growth of petroleum reserves in the world, where the distribution and structural deformation of the Aptian salt rocks have significant impacts on hydrocarbon accumulation. According to the Hotspur transform fault zone, the typical conjugated salt basins of Espirito Santo and Kwanza are selected in this study. Based on the previous seismic profiles and gravity and magnetism data, the Bouguer gravity anomaly data are superimposed on the plane in the Gplates software for reconstruction of the plates, and the Move software is used to restore balanced profile on the section. Then forward models designed according to the inversion results, and the contrast analogue experments are carried out. According to the studies, under the superposition of gravity sliding and gravity spreading, salt tectonic zones of extension-transition-contraction developed in the passive-margin basins, while factors resulted in the of salt structure deformation process among the conjugated basins, including slope angle, basement extension, the outer high barrier, salt deposition load and syn-depositional rate.(1) From Aptian to early Albian, the Espirito basin and the Kwanza basin were initially a unified salt basin. The east side of the unified basin was strongly stretched, forming faults and salt rafts in the extensional domain. At the same time, the unified basin was gradually divided, accompanied by the formation of the outer high, and the gravity deformation of salt rocks gradually slowed down. (2) From late Albian to Early Paleogene, the inherited upflit of the outer high in the Espirito Santo basin resulted in the vertical upward migrations of salt rocks; the uplift of the thick salt plateau in the Kwanza basin caused salt rocks to cross the outer high and form the thrust nappe. (3) From Late Paleogene to the present, the basement of the Espirito basin had steady thermal subsidence, and the salt structures were successively developed, then the salt rocks in the whole basin exhibit vertical migration characteristics. In the Kwanza basin, the basement was uplifted on a large scale, and the transport of salt rocks to the sea started again. Salt rafts in the extensional domain were further developed into salt rollovers; salt diapirs in the transitional zone and the contractional domain continued to rise; and the thrust nappe continued to develop, forming a large number of faults and folds in the supra salt layers. Then the salt rocks of the entire basin are continuously accumulating downslope with obvious structural zonation.
-
Key words:
- evolution /
- analogue experiments /
- physical simulation /
- balanced profile /
- salt structure /
- conjugated basin /
- South Atlantic /
- tectonics
-
图 1 南大西洋中段含盐盆地分布及剖面位置示意
地形数据来源Weatherall et al.(2015);投影方式:等距圆柱投影;参考坐标系:GCS_WGS_1984
Fig. 1. The sketch map of the distribution of salt basins in the central segment of the South Atlantic and the profile location of the study area
图 2 南大西洋中段古板块再造与布格重力异常叠合图
a.裂谷期;b.过渡期;c.漂移期;布格重力异常数据来源Balmino et al.(2012);Bonvalot et al.(2012);投影方式:等距圆柱投影;参考坐标系:GCS_WGS_1984
Fig. 2. Plate reconstruction and Bouguer gravity anomaly in the central segment of the South Atlantic
图 3 圣埃斯皮里图盆地(a)和宽扎盆地(b)原始地震剖面
a.圣埃斯皮里图盆地,据Blaich et al.(2011)修改;b.宽扎盆地,据Marton et al.(2000)修改;剖面位置见图 1
Fig. 3. Seismic profiles of the Espirito Santo basin (a) and the Kwanza basin(b)
图 4 南大西洋中段共轭盐盆平衡剖面恢复图
现今剖面a解释自图 3;参考文献Marton et al.(2000);Blaich et al.(2011)
Fig. 4. Restoration of balanced profile of conjugated salt basins in the central segment of the South Atlantic
-
Adam, J., Campbell, C., Cribb, J., et al., 2008.4D Physical Simulation of Basin-Scale Salt Tectonic Processed and Coupled Depositional Systems from the Rift Basin to Modern Continental Margin. Exploration & Production Oil & Gas Review, 6(11): 94-97. Balmino, G., Vales, N., Bonvalot, S., et al., 2012. Spherical Harmonic Modelling to Ultra-High Degree of Bouguer and Isostatic Anomalies. Journal of Geodesy, 86(7): 499-520. https://doi.org/10.1007/s00190-011-0533-4 Blaich, O.A., Inge, F.J., Filippos, T., 2011. Crustal Breakup and Continent-Ocean Transition at South Atlantic Conjugate Margins. Journal of Geophysical Research: Solid Earth, 116(B1): B01402. https://doi.org/10.1029/2010jb007686 Bonvalot, S., Balmino, G., Briais, A., et al., 2012. World Gravity Map: A Set of Global Complete Spherical Bouguer and Isostatic Anomaly Maps and Grids. EGU General Assembly Conference. Vienna, Austria. Chen, A.Q., Jin, C., Lou, Z.H., et al., 2013. Salt Tectonics and Basin Evolution in the Gabon Coastal Basin, West Africa. Journal of Earth Science, 24(6): 903-917. https://doi.org/10.1007/s12583-013-0383-5 Dooley, T.P., Hudec, M.R., 2017. The Effects of Base-Salt Relief on Salt Flow and Suprasalt Deformation Patterns: Part 2: Application to the Eastern Gulf of Mexico. Interpretation, 5(1): SD25-SD38. https://doi.org/10.1190/int-2016-0088.1 Dooley, T.P., Hudec, M.R., Carruthers, D., et al., 2017. The Effects of Base-Salt Relief on Salt Flow and Suprasalt Deformation Patterns: Part 1: Flow across Simple Steps in the Base of Salt. Interpretation, 5(1): SD1-SD23. https://doi.org/10.1190/int-2016-0087.1 Dooley, T.P., Jackson, M.P.A., Jackson, C.A.L., et al., 2015. Enigmatic Structures within Salt Walls of the Santos Basin: Part 2: Mechanical Explanation from Physical Modelling. Journal of Structural Geology, 75: 163-187. https://doi.org/10.1016/j.jsg.2015.01.009 Fodor, R.V., Hanan, B.B., 2000. Geochemical Evidence for the Trindade Hotspot Trace: Columbia Seamount Ankaramite. Lithos, 51(4): 293-304. https://doi.org/10.1016/s0024-4937(00)00002-5 Fort, X., Brun, J.P., Chauvel, F., 2004. Salt Tectonics on the Angolan Margin, Synsedimentary Deformation Processes. AAPG Bulletin, 88(11): 1523-1544. https://doi.org/10.1306/06010403012 Guo, D., 2016. Petroleum System Analysis and Exploration Potential for the Pre-Salt Sequences in the Campos Basin, Brazil (Dissertation). China University of Petroleum, Beijing(in Chinese with English abstract). Heine, C., Zoethout, J., Müller, R.D., 2013. Kinematics of the South Atlantic Rift. Physics, 4(2): 215-253. https://doi.org/10.5194/se-4-215-2013 Hudec, M.R., Jackson, M.P.A., 2004. Regional Restoration across the Kwanza Basin, Angola: Salt Tectonics Triggered by Repeated Uplift of a Metastable Passive Margin. AAPG Bulletin, 88(7): 971-990. https://doi.org/10.1306/02050403061 Jackson, C.A.L., Jackson, M.P.A., Hudec, M.R., et al., 2015. Enigmatic Structures within Salt Walls of the Santos Basin: Part 1: Geometry and Kinematics from 3D Seismic Reflection and Well Data. Journal of Structural Geology, 75: 135-162. https://doi.org/10.1016/j.jsg.2015.01.010 Kukla, P.A., Strozyk, F., Mohriak, W.U., 2018. South Atlantic Salt Basins-Witnesses of Complex Passive Margin Evolution. Gondwana Research, 53: 41-57. https://doi.org/10.1016/j.gr.2017.03.012 Lentini, M.R., Fraser, S.I., Sumner, H.S., et al., 2010. Geodynamics of the Central South Atlantic Conjugate Margins: Implications for Hydrocarbon Potential. Petroleum Geoscience, 16(3): 217-229. https://doi.org/10.1144/1354-079309-909 Li, F.H., Xie G.A., Tian R.S., et al., 2018. Physical Modeling of Xu-Huai Thrust-Fold Belt on the Southeastern Margin of North China Block. Geological Bulletin of China, 37(6): 1087-1100(in Chinese with English abstract). http://www.researchgate.net/publication/329537754_Physical_modeling_of_Xu-Huai_thrust-fold_belt_on_the_southeastern_margin_of_North_China_Block Li, P., Hu, Z.X., He, R.L., et al., 2018. The Tectonic Evolution of the Central Anticline in Western Hubei of China during Mesozoic: Evidences from Apatite Fission Track. Earth Science, 43(7): 2518-2526(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201807023.htm Liu, J.J., Wu, C.W., Ding, F., 2018. Basin Types and Hydrocarbon Distribution in Salt Basins in the South Atlantic. Petroleum Geology and Experiment, 40(3): 372-380(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYSD201803010.htm Marcano, G., Anka, Z., Primio, R.D., 2013. Major Controlling Factors on Hydrocarbon Generation and Leakage in South Atlantic Conjugate Margins: A Comparative Study of Colorado, Orange, Campos and Lower Congo Basins. Tectonophysics, 604(5): 172-190. https://doi.org/10.1016/j.tecto.2013.02.004 Marton, L.G., Tari, G.B.C., Lehmann, C.T., 2000. Evolution of the Angolan Passive Margin, West Africa, with Emphasis on Post-Salt Structural Styles. Geophysical Monograph-American Geophysical Union, 115: 129-150. https://doi.org/10.1029/gm115p0129 Matthews, K.J., Maloney, K.T., Zahirovic, S., et al., 2016. Global Plate Boundary Evolution and Kinematics since the Late Paleozoic. Global and Planetary Change, 146: 226-250. https://doi.org/10.1016/j.gloplacha.2016.10.002 Moulin, M., Aslanian, D., Unternehr, P., 2010. A New Starting Point for the South and Equatorial Atlantic Ocean. Earth-Science Reviews, 98(1-2): 1-37. https://doi.org/10.1016/j.earscirev.2009.08.001 Müller, R.D., Cannon, J., Qin, X.D., et al., 2018. GPlates: Building a Virtual Earth through Deep Time. Geochemistry, Geophysics, Geosystems, 19(7): 2243-2261. https://doi.org/10.1029/2018gc007584 Rowan, M.G., Peel, F.J., Vendeville, B.C., et al., 2012. Salt Tectonics at Passive Margins: Geology versus Models-Discussion. Marine and Petroleum Geology, 37(1): 184-194. https://doi.org/10.1016/j.marpetgeo.2012.04.007 Strozyk, F., Back, S., Kukla, P.A., 2016. Comparison of the Rift and Post-Rift Architecture of Conjugated Salt and Salt-Free Basins Offshore Brazil and Angola/Namibia, South Atlantic. Tectonophysics, 716: 204-224. https://doi.org/10.1016/j.tecto.2016.12.012 Tang, P.C., 2011. Cenozoic Salt Structures in the Western Kuqa Depression, Southern Tianshan: Structural Analysis and Physical Modeling (Dissertation). Zhejiang University, Hangzhou(in Chinese with English abstract). Tao, C.Z., Yin, J.Y., Lu, H.M., et al., 2015. Impact of Salt on Hydrocarbon Accumulation in South Atlantic Passive Margin Basins. Petroleum Geology and Experiment, 37(5): 614-618(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD201505014.htm Torsvik, T.H., Rousse, S., Labails, C., et al., 2009. A New Scheme for the Opening of the South Atlantic Ocean and the Dissection of an Aptian Salt Basin. Geophysical Journal International, 177(3): 1315-1333. https://doi.org/10.1111/j.1365-246x.2009.04137.x Wang, X., Wang, Z.M., Xie, H.W., et al, 2010. Cenozoic Salt Tectonics and Physical Models in the Kuqa Depression of Tarim Basin, China. Scientia Sinica Terrae, 40: 1655-1668(in Chinese). doi: 10.1360/zd2010-40-12-1655 Weatherall, P., Marks, K.M., Jakobsson, M., et al., 2015. A New Digital Bathymetric Model of the World's Oceans. Earth & Space Science, 2(8): 331-345. https://doi.org/10.1002/2015ea000107 Wen, Z.X., Wu, Y.D., Bian, H.G., et al., 2018. Variations in Basin Architecture and Accumulation of Giant Oil and Gas Fields along the Passive Continent Margins of the South Atlantic. Earth Science Frontiers, 25(4): 132-141(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY201804013.htm Whittaker, J.M., Williams, S., Masterton, S.M., et al., 2013. Interactions among Plumes, Mantle Circulation and Mid-Ocean Ridges. AGU Fall Meeting Abstracts, San Francisco, U.S.A. . Wu, Z.Y., 2014. Structural Analysis and Analogue Modeling of Salt Sructures in the Salt-Bearing Sedimentary Basin (Dissertation). Nanjing University, Nanjing(in Chinese with English abstract). Xie, G.A., Jia, D., Zhang, Q.L., et al., 2013. Physical Modeling of the Jura-Type Folds in Eastern Sichuan. Acta Geologica Sinica, 87(6): 773-788(in Chinese with English abstract). Yang, T., Tang, L.J., Yu, Y.X., et al., 2015. Characteristics of Reservoirs Related to Salt Structure and Its Experimental Simulation in the Southern Margin of Precaspian Basin. Petroleum Geology & Experiment, 37(2): 246-251, 258(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_petroleum-geology-experiment_thesis/0201218206110.html Yang, Y.C., Sun, Y.M., Li, Y.C., et al., 2015. Distribution of the Source Rocks and Mechanisms for Petroleum Enrichment in the Conjugate Basins on the South Atlantic Passive Margins: Cases Studies from the Santos and Namibe Basins. Marine Geology & Quaternary Geology, 35(2): 157-167(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ201502023.htm Yu, Y.X., 2006. The Salt-Related Structures and Their Formation Mechanisms in the Qiulitag Structural Belt, Kuqa Depression (Dissertation). China University of Petroleum, Beijing(in Chinese with English abstract). Zhang, G.Y., Wen, Z.X., Liang, Y.B., et al., 2014. Tectonic-Sedimentary Features and Petroleum Accumulation in the Passive Continental Margin Basins of South Atlantic Peripheries. Earth Science Frontiers, 21(3): 18-25(in Chinese with English abstract). 郭栋, 2016. 坎波斯盆地盐下含油气系统分析与资源评价(硕士学位论文). 北京: 中国石油大学. 李法浩, 解国爱, 田荣松, 等, 2018. 华北板块东南缘徐淮推覆-褶皱带的物理模拟. 地质通报, 37(6): 1087-1100. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201806013.htm 李朋, 胡正祥, 何仁亮, 等, 2018. 鄂西中央背斜带中生代构造演化过程: 来自磷灰石裂变径迹的证据. 地球科学, 43(7): 2518-2526. doi: 10.3799/dqkx.2018.517 刘静静, 邬长武, 丁峰, 2018. 南大西洋两岸含盐盆地类型与油气分布规律. 石油实验地质, 40(3): 372-380. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201803010.htm 唐鹏程, 2011. 南天山库车坳陷西段新生代盐构造: 构造分析和物理模拟(博士学位论文). 杭州: 浙江大学. 陶崇智, 殷进垠, 陆红梅, 等, 2015. 南大西洋被动陆缘盆地盐岩对油气成藏的影响. 石油实验地质, 37(5): 614-618. 汪新, 王招明, 谢会文, 等, 2010. 塔里木库车坳陷新生代盐构造解析及其变形模拟. 中国科学: 地球科学, 40(12): 1655-1668. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201012004.htm 温志新, 吴亚东, 边海光, 等, 2018. 南大西洋两岸被动陆缘盆地结构差异与大油气田分布. 地学前缘, 25(4): 132-141. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201804013.htm 吴珍云, 2014. 含盐沉积盆地盐构造分析和物理模拟(博士学位论文). 南京: 南京大学. 解国爱, 贾东, 张庆龙, 等, 2013. 川东侏罗山式褶皱构造带的物理模拟研究. 地质学报, 87(6): 773-788. doi: 10.3969/j.issn.0001-5717.2013.06.003 杨泰, 汤良杰, 余一欣, 等, 2015. 滨里海盆地南缘盐构造相关油气成藏特征及其物理模拟. 石油实验地质, 37(2): 246-251. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201502019.htm 杨永才, 孙玉梅, 李友川, 等, 2015. 南大西洋被动陆缘共轭盆地烃源岩分布与油气富集规律: 以巴西桑托斯盆地和西非纳米贝盆地为例. 海洋地质与第四纪地质, 35(2): 157-167. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201502023.htm 余一欣, 2006. 库车坳陷秋里塔格构造带盐相关构造及其形成机理(博士学位论文). 北京: 中国石油大学. 张光亚, 温志新, 梁英波, 等, 2014. 全球被动陆缘盆地构造沉积与油气成藏: 以南大西洋周缘盆地为例. 地学前缘, 21(3): 18-25. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201403004.htm