• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    南大西洋中段共轭盐盆盐构造变形期次对比及意义

    章雨 李江海 程鹏

    章雨, 李江海, 程鹏, 2021. 南大西洋中段共轭盐盆盐构造变形期次对比及意义. 地球科学, 46(6): 2218-2229. doi: 10.3799/dqkx.2020.033
    引用本文: 章雨, 李江海, 程鹏, 2021. 南大西洋中段共轭盐盆盐构造变形期次对比及意义. 地球科学, 46(6): 2218-2229. doi: 10.3799/dqkx.2020.033
    Zhang Yu, Li Jianghai, Cheng Peng, 2021. Comparison of Salt Structure Deformation Periods of Conjugated Salt Basins in Central Segment of South Atlantic. Earth Science, 46(6): 2218-2229. doi: 10.3799/dqkx.2020.033
    Citation: Zhang Yu, Li Jianghai, Cheng Peng, 2021. Comparison of Salt Structure Deformation Periods of Conjugated Salt Basins in Central Segment of South Atlantic. Earth Science, 46(6): 2218-2229. doi: 10.3799/dqkx.2020.033

    南大西洋中段共轭盐盆盐构造变形期次对比及意义

    doi: 10.3799/dqkx.2020.033
    基金项目: 

    国家科技重大专项“大型油气田及煤层气开发”项目 2016ZX05033002

    国家科技重大专项“大型油气田及煤层气开发”项目 2016ZX05033001

    中石化科技部项目 P18090-2

    详细信息
      作者简介:

      章雨(1995-), 男, 硕士, 现主要从事构造及石油地质研究.ORCID: 0000-0002-6948-0730.E-mail: 2892122872@qq.com

      通讯作者:

      李江海, E-mail: jhli@pku.edu.cn

    • 中图分类号: P542

    Comparison of Salt Structure Deformation Periods of Conjugated Salt Basins in Central Segment of South Atlantic

    • 摘要: 南大西洋中段被动陆缘含盐盆地群是全球油气储量快速增长的地区,阿普特阶盐岩的分布及构造变形对该区油气成藏产生了重要影响.在前人地震及重磁资料基础上,沿热刺转换断裂带选取圣埃斯皮里图和宽扎这组典型共轭盐盆,平面上在Gplates软件中叠合布格重力异常数据进行板块构造重建,剖面上应用Move软件进行平衡恢复,根据反演结果设计正演模型,进行物理模拟对比实验.在重力滑脱及重力扩展作用下,盆地内形成了伸展-过渡-挤压的盐构造分带,而底板斜坡倾角、基底伸展量、前缘阻挡、盐上沉积载荷及同沉积速率等因素,造成了共轭盆地间盐构造变形过程的差异性.盐构造变形过程可分为盐构造初期变形阶段(阿普特期-阿尔比早期)和盐构造继承性发育阶段(两期,阿尔比晚期-古近纪早期和古近纪晚期-现今):(1)阿普特期-阿尔比早期,圣埃斯皮里图和宽扎盆地初始为统一盐盆,盐盆东侧强烈伸展,形成伸展区断裂及盐筏,同时盐盆逐渐一分为二并形成外部高地带,盐岩重力变形逐渐减慢.(2)阿尔比晚期-古近纪早期,圣埃斯皮里图盆地外部高地带继承性隆起,盐岩垂向上浮迁移;宽扎盆地厚层盐高原隆起,盐岩越过外部高地带形成逆冲推覆体.(3)古近纪晚期-现今,圣埃斯皮里图盆地基底稳定热沉降,盐构造继承性发育,整个盆地盐岩呈现垂向迁移特征;宽扎盆地靠陆端基底一定规模构造抬升,盐岩向海运输重建,伸展区盐筏进一步发育成盐滚,过渡区及挤压区盐底辟持续上拱,逆冲推覆体继续发育并在盐上层形成大量断裂及褶皱,整个盆地盐岩不断向坡下聚集且构造分带性明显.

       

    • 图  1  南大西洋中段含盐盆地分布及剖面位置示意

      地形数据来源Weatherall et al.(2015);投影方式:等距圆柱投影;参考坐标系:GCS_WGS_1984

      Fig.  1.  The sketch map of the distribution of salt basins in the central segment of the South Atlantic and the profile location of the study area

      图  2  南大西洋中段古板块再造与布格重力异常叠合图

      a.裂谷期;b.过渡期;c.漂移期;布格重力异常数据来源Balmino et al.(2012)Bonvalot et al.(2012);投影方式:等距圆柱投影;参考坐标系:GCS_WGS_1984

      Fig.  2.  Plate reconstruction and Bouguer gravity anomaly in the central segment of the South Atlantic

      图  3  圣埃斯皮里图盆地(a)和宽扎盆地(b)原始地震剖面

      a.圣埃斯皮里图盆地,据Blaich et al.(2011)修改;b.宽扎盆地,据Marton et al.(2000)修改;剖面位置见图 1

      Fig.  3.  Seismic profiles of the Espirito Santo basin (a) and the Kwanza basin(b)

      图  4  南大西洋中段共轭盐盆平衡剖面恢复图

      现今剖面a解释自图 3;参考文献Marton et al.(2000)Blaich et al.(2011)

      Fig.  4.  Restoration of balanced profile of conjugated salt basins in the central segment of the South Atlantic

      图  5  圣埃斯皮里图盆地盐构造物理模拟模型图(纵向比例尺夸大2倍)

      Fig.  5.  The simulation model of salt structures in the Espirito Santo basin

      图  6  宽扎盆地盐构造物理模拟模型图(纵向比例尺夸大2倍)

      Fig.  6.  The simulation model of salt structures in the Kwanza basin

      图  7  模型一模拟过程平面

      Fig.  7.  The top view of model-1 in the simulation process

      图  8  模型一模拟结果L1剖面图

      a.原始剖面;b.解释剖面(纵向比例尺夸大2倍)

      Fig.  8.  The L1 cross-sectional view of the model-1 results

      图  9  模型一模拟结果L2剖面图

      a.原始剖面;b.解释剖面(纵向比例尺夸大2倍)

      Fig.  9.  The L2 cross-sectional view of the model-1 results

      图  10  模型二模拟过程平面图

      Fig.  10.  The top view of model-2 in the simulation process

      图  11  模型二模拟结果L3剖面图

      a.原始剖面;b.解释剖面(纵向比例尺夸大2倍)

      Fig.  11.  The L3 cross-sectional view of the model-2 results

    • Adam, J., Campbell, C., Cribb, J., et al., 2008.4D Physical Simulation of Basin-Scale Salt Tectonic Processed and Coupled Depositional Systems from the Rift Basin to Modern Continental Margin. Exploration & Production Oil & Gas Review, 6(11): 94-97.
      Balmino, G., Vales, N., Bonvalot, S., et al., 2012. Spherical Harmonic Modelling to Ultra-High Degree of Bouguer and Isostatic Anomalies. Journal of Geodesy, 86(7): 499-520. https://doi.org/10.1007/s00190-011-0533-4
      Blaich, O.A., Inge, F.J., Filippos, T., 2011. Crustal Breakup and Continent-Ocean Transition at South Atlantic Conjugate Margins. Journal of Geophysical Research: Solid Earth, 116(B1): B01402. https://doi.org/10.1029/2010jb007686
      Bonvalot, S., Balmino, G., Briais, A., et al., 2012. World Gravity Map: A Set of Global Complete Spherical Bouguer and Isostatic Anomaly Maps and Grids. EGU General Assembly Conference. Vienna, Austria.
      Chen, A.Q., Jin, C., Lou, Z.H., et al., 2013. Salt Tectonics and Basin Evolution in the Gabon Coastal Basin, West Africa. Journal of Earth Science, 24(6): 903-917. https://doi.org/10.1007/s12583-013-0383-5
      Dooley, T.P., Hudec, M.R., 2017. The Effects of Base-Salt Relief on Salt Flow and Suprasalt Deformation Patterns: Part 2: Application to the Eastern Gulf of Mexico. Interpretation, 5(1): SD25-SD38. https://doi.org/10.1190/int-2016-0088.1
      Dooley, T.P., Hudec, M.R., Carruthers, D., et al., 2017. The Effects of Base-Salt Relief on Salt Flow and Suprasalt Deformation Patterns: Part 1: Flow across Simple Steps in the Base of Salt. Interpretation, 5(1): SD1-SD23. https://doi.org/10.1190/int-2016-0087.1
      Dooley, T.P., Jackson, M.P.A., Jackson, C.A.L., et al., 2015. Enigmatic Structures within Salt Walls of the Santos Basin: Part 2: Mechanical Explanation from Physical Modelling. Journal of Structural Geology, 75: 163-187. https://doi.org/10.1016/j.jsg.2015.01.009
      Fodor, R.V., Hanan, B.B., 2000. Geochemical Evidence for the Trindade Hotspot Trace: Columbia Seamount Ankaramite. Lithos, 51(4): 293-304. https://doi.org/10.1016/s0024-4937(00)00002-5
      Fort, X., Brun, J.P., Chauvel, F., 2004. Salt Tectonics on the Angolan Margin, Synsedimentary Deformation Processes. AAPG Bulletin, 88(11): 1523-1544. https://doi.org/10.1306/06010403012
      Guo, D., 2016. Petroleum System Analysis and Exploration Potential for the Pre-Salt Sequences in the Campos Basin, Brazil (Dissertation). China University of Petroleum, Beijing(in Chinese with English abstract).
      Heine, C., Zoethout, J., Müller, R.D., 2013. Kinematics of the South Atlantic Rift. Physics, 4(2): 215-253. https://doi.org/10.5194/se-4-215-2013
      Hudec, M.R., Jackson, M.P.A., 2004. Regional Restoration across the Kwanza Basin, Angola: Salt Tectonics Triggered by Repeated Uplift of a Metastable Passive Margin. AAPG Bulletin, 88(7): 971-990. https://doi.org/10.1306/02050403061
      Jackson, C.A.L., Jackson, M.P.A., Hudec, M.R., et al., 2015. Enigmatic Structures within Salt Walls of the Santos Basin: Part 1: Geometry and Kinematics from 3D Seismic Reflection and Well Data. Journal of Structural Geology, 75: 135-162. https://doi.org/10.1016/j.jsg.2015.01.010
      Kukla, P.A., Strozyk, F., Mohriak, W.U., 2018. South Atlantic Salt Basins-Witnesses of Complex Passive Margin Evolution. Gondwana Research, 53: 41-57. https://doi.org/10.1016/j.gr.2017.03.012
      Lentini, M.R., Fraser, S.I., Sumner, H.S., et al., 2010. Geodynamics of the Central South Atlantic Conjugate Margins: Implications for Hydrocarbon Potential. Petroleum Geoscience, 16(3): 217-229. https://doi.org/10.1144/1354-079309-909
      Li, F.H., Xie G.A., Tian R.S., et al., 2018. Physical Modeling of Xu-Huai Thrust-Fold Belt on the Southeastern Margin of North China Block. Geological Bulletin of China, 37(6): 1087-1100(in Chinese with English abstract). http://www.researchgate.net/publication/329537754_Physical_modeling_of_Xu-Huai_thrust-fold_belt_on_the_southeastern_margin_of_North_China_Block
      Li, P., Hu, Z.X., He, R.L., et al., 2018. The Tectonic Evolution of the Central Anticline in Western Hubei of China during Mesozoic: Evidences from Apatite Fission Track. Earth Science, 43(7): 2518-2526(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201807023.htm
      Liu, J.J., Wu, C.W., Ding, F., 2018. Basin Types and Hydrocarbon Distribution in Salt Basins in the South Atlantic. Petroleum Geology and Experiment, 40(3): 372-380(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYSD201803010.htm
      Marcano, G., Anka, Z., Primio, R.D., 2013. Major Controlling Factors on Hydrocarbon Generation and Leakage in South Atlantic Conjugate Margins: A Comparative Study of Colorado, Orange, Campos and Lower Congo Basins. Tectonophysics, 604(5): 172-190. https://doi.org/10.1016/j.tecto.2013.02.004
      Marton, L.G., Tari, G.B.C., Lehmann, C.T., 2000. Evolution of the Angolan Passive Margin, West Africa, with Emphasis on Post-Salt Structural Styles. Geophysical Monograph-American Geophysical Union, 115: 129-150. https://doi.org/10.1029/gm115p0129
      Matthews, K.J., Maloney, K.T., Zahirovic, S., et al., 2016. Global Plate Boundary Evolution and Kinematics since the Late Paleozoic. Global and Planetary Change, 146: 226-250. https://doi.org/10.1016/j.gloplacha.2016.10.002
      Moulin, M., Aslanian, D., Unternehr, P., 2010. A New Starting Point for the South and Equatorial Atlantic Ocean. Earth-Science Reviews, 98(1-2): 1-37. https://doi.org/10.1016/j.earscirev.2009.08.001
      Müller, R.D., Cannon, J., Qin, X.D., et al., 2018. GPlates: Building a Virtual Earth through Deep Time. Geochemistry, Geophysics, Geosystems, 19(7): 2243-2261. https://doi.org/10.1029/2018gc007584
      Rowan, M.G., Peel, F.J., Vendeville, B.C., et al., 2012. Salt Tectonics at Passive Margins: Geology versus Models-Discussion. Marine and Petroleum Geology, 37(1): 184-194. https://doi.org/10.1016/j.marpetgeo.2012.04.007
      Strozyk, F., Back, S., Kukla, P.A., 2016. Comparison of the Rift and Post-Rift Architecture of Conjugated Salt and Salt-Free Basins Offshore Brazil and Angola/Namibia, South Atlantic. Tectonophysics, 716: 204-224. https://doi.org/10.1016/j.tecto.2016.12.012
      Tang, P.C., 2011. Cenozoic Salt Structures in the Western Kuqa Depression, Southern Tianshan: Structural Analysis and Physical Modeling (Dissertation). Zhejiang University, Hangzhou(in Chinese with English abstract).
      Tao, C.Z., Yin, J.Y., Lu, H.M., et al., 2015. Impact of Salt on Hydrocarbon Accumulation in South Atlantic Passive Margin Basins. Petroleum Geology and Experiment, 37(5): 614-618(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD201505014.htm
      Torsvik, T.H., Rousse, S., Labails, C., et al., 2009. A New Scheme for the Opening of the South Atlantic Ocean and the Dissection of an Aptian Salt Basin. Geophysical Journal International, 177(3): 1315-1333. https://doi.org/10.1111/j.1365-246x.2009.04137.x
      Wang, X., Wang, Z.M., Xie, H.W., et al, 2010. Cenozoic Salt Tectonics and Physical Models in the Kuqa Depression of Tarim Basin, China. Scientia Sinica Terrae, 40: 1655-1668(in Chinese). doi: 10.1360/zd2010-40-12-1655
      Weatherall, P., Marks, K.M., Jakobsson, M., et al., 2015. A New Digital Bathymetric Model of the World's Oceans. Earth & Space Science, 2(8): 331-345. https://doi.org/10.1002/2015ea000107
      Wen, Z.X., Wu, Y.D., Bian, H.G., et al., 2018. Variations in Basin Architecture and Accumulation of Giant Oil and Gas Fields along the Passive Continent Margins of the South Atlantic. Earth Science Frontiers, 25(4): 132-141(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY201804013.htm
      Whittaker, J.M., Williams, S., Masterton, S.M., et al., 2013. Interactions among Plumes, Mantle Circulation and Mid-Ocean Ridges. AGU Fall Meeting Abstracts, San Francisco, U.S.A. .
      Wu, Z.Y., 2014. Structural Analysis and Analogue Modeling of Salt Sructures in the Salt-Bearing Sedimentary Basin (Dissertation). Nanjing University, Nanjing(in Chinese with English abstract).
      Xie, G.A., Jia, D., Zhang, Q.L., et al., 2013. Physical Modeling of the Jura-Type Folds in Eastern Sichuan. Acta Geologica Sinica, 87(6): 773-788(in Chinese with English abstract).
      Yang, T., Tang, L.J., Yu, Y.X., et al., 2015. Characteristics of Reservoirs Related to Salt Structure and Its Experimental Simulation in the Southern Margin of Precaspian Basin. Petroleum Geology & Experiment, 37(2): 246-251, 258(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_petroleum-geology-experiment_thesis/0201218206110.html
      Yang, Y.C., Sun, Y.M., Li, Y.C., et al., 2015. Distribution of the Source Rocks and Mechanisms for Petroleum Enrichment in the Conjugate Basins on the South Atlantic Passive Margins: Cases Studies from the Santos and Namibe Basins. Marine Geology & Quaternary Geology, 35(2): 157-167(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ201502023.htm
      Yu, Y.X., 2006. The Salt-Related Structures and Their Formation Mechanisms in the Qiulitag Structural Belt, Kuqa Depression (Dissertation). China University of Petroleum, Beijing(in Chinese with English abstract).
      Zhang, G.Y., Wen, Z.X., Liang, Y.B., et al., 2014. Tectonic-Sedimentary Features and Petroleum Accumulation in the Passive Continental Margin Basins of South Atlantic Peripheries. Earth Science Frontiers, 21(3): 18-25(in Chinese with English abstract).
      郭栋, 2016. 坎波斯盆地盐下含油气系统分析与资源评价(硕士学位论文). 北京: 中国石油大学.
      李法浩, 解国爱, 田荣松, 等, 2018. 华北板块东南缘徐淮推覆-褶皱带的物理模拟. 地质通报, 37(6): 1087-1100. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201806013.htm
      李朋, 胡正祥, 何仁亮, 等, 2018. 鄂西中央背斜带中生代构造演化过程: 来自磷灰石裂变径迹的证据. 地球科学, 43(7): 2518-2526. doi: 10.3799/dqkx.2018.517
      刘静静, 邬长武, 丁峰, 2018. 南大西洋两岸含盐盆地类型与油气分布规律. 石油实验地质, 40(3): 372-380. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201803010.htm
      唐鹏程, 2011. 南天山库车坳陷西段新生代盐构造: 构造分析和物理模拟(博士学位论文). 杭州: 浙江大学.
      陶崇智, 殷进垠, 陆红梅, 等, 2015. 南大西洋被动陆缘盆地盐岩对油气成藏的影响. 石油实验地质, 37(5): 614-618.
      汪新, 王招明, 谢会文, 等, 2010. 塔里木库车坳陷新生代盐构造解析及其变形模拟. 中国科学: 地球科学, 40(12): 1655-1668. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201012004.htm
      温志新, 吴亚东, 边海光, 等, 2018. 南大西洋两岸被动陆缘盆地结构差异与大油气田分布. 地学前缘, 25(4): 132-141. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201804013.htm
      吴珍云, 2014. 含盐沉积盆地盐构造分析和物理模拟(博士学位论文). 南京: 南京大学.
      解国爱, 贾东, 张庆龙, 等, 2013. 川东侏罗山式褶皱构造带的物理模拟研究. 地质学报, 87(6): 773-788. doi: 10.3969/j.issn.0001-5717.2013.06.003
      杨泰, 汤良杰, 余一欣, 等, 2015. 滨里海盆地南缘盐构造相关油气成藏特征及其物理模拟. 石油实验地质, 37(2): 246-251. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201502019.htm
      杨永才, 孙玉梅, 李友川, 等, 2015. 南大西洋被动陆缘共轭盆地烃源岩分布与油气富集规律: 以巴西桑托斯盆地和西非纳米贝盆地为例. 海洋地质与第四纪地质, 35(2): 157-167. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201502023.htm
      余一欣, 2006. 库车坳陷秋里塔格构造带盐相关构造及其形成机理(博士学位论文). 北京: 中国石油大学.
      张光亚, 温志新, 梁英波, 等, 2014. 全球被动陆缘盆地构造沉积与油气成藏: 以南大西洋周缘盆地为例. 地学前缘, 21(3): 18-25. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201403004.htm
    • 加载中
    图(11)
    计量
    • 文章访问数:  1377
    • HTML全文浏览量:  1020
    • PDF下载量:  55
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-05-22
    • 刊出日期:  2021-06-15

    目录

      /

      返回文章
      返回