Provenance of U1431 Sediments from the Eastern Subbasin of the South China Sea since Middle Miocene
-
摘要: 南海东部次海盆的沉积记录蕴含着区域内中中新世以来沉积物的风化过程和演化历史信息.本文分析了国际大洋发现计划IODP 349航次南海东部次海盆U1431站位沉积物的主、微量元素和Sr-Nd同位素特征.研究显示,样品中化学风化蚀变指数为49~74,表明源区的化学风化强度为低到中等强度.沉积物在风化过程中以斜长石风化为主.含有火山碎屑的岩性单元Ⅵ和Ⅶ及55X-2层位受到含Fe、Mg矿物组分的物质来源输入影响,其余沉积物主要来自长英质源区.Sr和Nd同位素特征显示不同风化程度的沉积物源区具有明显差异.通过与周围潜在源区进行对比,推断12.8 Ma至今,U1431站位的物源主要来自珠江流域,印支半岛、吕宋和巴拉望提供了少量物质.其中12.5~7.4 Ma,沉积物源区受到周围岩浆活动形成的基性物质输入的影响,但仍以珠江源区为主.6.5 Ma以后,台湾岛隆升剥蚀的陆源物质进入中央海盆.因此,台湾岛成为源区之一.Abstract: The sedimentary records of the east subbasin in the South China Sea reflect the weathering and evolution history of sediments since the Middle Miocene. We have analyzed the major, trace elements, and Sr-Nd isotopes of the sediments from the International Ocean Discovery Program (IODP) expedition 349 site U1431. The chemical weathering index of alteration (CIA) ranges from 49 to 74, indicating a low to moderate chemical weathering degree of the provenance. The chemical weathering trend shows the preferential leaching of plagioclase. The samples from units Ⅵ, Ⅶ and 55X-2 layer containing pyroclast are affected by the input of mafic materials, while the provenance of other samples is mainly felsic end-members. Sr and Nd isotopes show significant changes in the provenance of the sediments at U1431 site. By analyzing the Sr-Nd isotopic characteristics of sediments from U1431 site and surrounding potential provenance, we inferred the sediments at U1431 site were probably mainly from the Pear River and slightly from the Indochina Peninsula, Luzon and Palawan since 12.8 Ma. Several samples show positive εNd and low 86Sr/87Sr which may be related to the multiple volcanic activities in the study area during 12.5-7.4 Ma. After 6.5 Ma, the terrestrial material formed in the uplifting and erosion of Taiwan Island entered the central basin. Thus, Taiwan Island became one of the main sources.
-
Key words:
- South China Sea /
- the eastern subbasin /
- ocean drilling /
- sediment /
- chemical weathering /
- provenance /
- marine geology
-
图 2 U1431站点样品编号及取样位置处录井柱状图
Fig. 2. Stratigraphy chart of recovered cores and sample locations at site U1431
图 3 U1431站位地球化学指标随深度变化
U1431站位的年龄数据来自Li et al. (2015)
Fig. 3. Geochemical variations at site U1431 with depth
图 10 U1431站位样品Sr-Nd同位素分布
图据Liu et al. (2017b); 湄公河和红河数据来自Liu et al. (2007); 婆罗洲沿海和南沙群岛的沉积物数据来自Wei et al. (2012); 巴拉望数据来自Tu et al. (1992); 苏门答腊数据来自White and Patchett (1984); 海南岛基岩数据来自Fang et al. (1992); 吕宋数据来自Knittel et al. (1988); 台湾岛河流的数据来自Chen and Lee (1990)和Lan et al. (2002); 珠江数据来自Hu et al. (2013); Annamite Range river的数据来自Jonell et al. (2017); U1431站点扩张期后玄武岩数据来自Zhang et al. (2018); U1433站位沉积物数据来自Liu et al. (2017b)
Fig. 10. Plot of Sr versus Nd isotopes for the samples at site U1431
表 1 U1431站点沉积物主量元素组成(%)
Table 1. The major elemental concentrations (%) of sediments at site U1431
深度(mbsf) SiO2 Al2O3 MgO CaO Na2O K2O TFeO MnO P2O5 TiO2 D-1H-2 2.64 66.97 15.19 2.14 2.87 4.83 2.35 4.13 0.31 0.22 0.50 D-4H-4 27.76 58.83 19.41 3.32 3.89 2.61 3.26 6.70 0.21 0.22 1.06 D-8H-2 62.38 56.42 20.12 3.28 5.62 2.67 3.65 6.58 0.23 0.13 0.81 D-12H-4 103.44 57.85 20.12 3.32 3.88 1.89 3.80 7.33 0.22 0.13 0.98 D-16H-5 141.82 59.85 20.33 2.84 2.47 1.82 3.98 6.94 0.15 0.14 0.99 D-20X-5 177.02 59.42 19.43 3.28 3.46 1.84 3.50 7.22 0.16 0.12 1.05 D-28X-6 253.38 56.62 19.17 2.97 7.77 1.80 3.48 6.41 0.17 0.16 0.96 D-32X-2 287.62 57.19 21.28 3.17 2.62 1.79 3.95 8.26 0.17 0.14 0.94 D-36X-4 328.22 60.48 19.35 3.19 2.38 1.75 3.85 7.30 0.11 0.13 0.96 D-39X-3 356.97 57.65 19.93 3.16 5.62 1.67 3.86 6.33 0.15 0.15 0.99 D-44X-4 398.78 58.19 19.66 2.86 5.97 1.76 3.63 6.22 0.15 0.14 0.92 D-48X-2 433.48 56.96 20.35 2.97 6.00 1.60 3.90 6.49 0.13 0.13 0.97 D-52X-CC 471.07 55.46 19.95 2.99 7.64 1.53 3.41 7.20 0.22 0.18 0.92 D-55X-2 499.68 57.37 17.70 4.00 0.84 3.36 3.25 10.31 0.06 0.17 2.44 D-60X-1 548.99 58.11 21.53 3.42 0.70 1.64 4.20 8.13 0.75 0.13 0.89 E-7R-2 606.18 51.40 17.32 4.57 5.17 4.21 2.55 10.45 0.15 0.57 3.12 E-10R-2 635.98 51.80 17.90 5.78 3.88 4.60 2.33 9.67 0.18 0.39 2.99 E-17R-6 707.52 53.85 17.67 2.89 4.72 5.30 3.00 8.38 0.23 0.76 2.71 E-22R-6 756.57 48.79 16.67 8.41 5.99 3.44 1.10 10.76 0.14 0.43 3.78 E-26R-2 790.55 49.41 18.29 6.67 4.97 4.46 2.03 9.27 0.11 0.28 4.04 E-31R-5 841.70 49.38 16.12 8.34 4.95 4.24 1.96 10.11 0.18 0.76 3.43 E-36R-3 887.29 59.70 20.83 3.15 0.46 1.70 4.03 7.90 0.60 0.26 0.88 平均含量 — 56.44 19.01 3.94 4.18 2.75 3.23 7.82 0.22 0.26 1.65 深海黏土 — 53.48 15.87 3.48 4.06 — 3.01 9.29 0.87 — 0.77 UCC — 65.89 15.17 2.20 4.19 3.89 3.39 4.49 0.07 0.20 0.50 注:TFeO为总铁,UCC(upper continental crust)为大陆上地壳(McLennan, 2001). 表 2 U1431站点沉积物稀土元素特征参数
Table 2. REE characteristics of sediments at site U1431
ΣREE(10-6) LREE(10-6) HREE(10-6) LREE/HREE LaN/YbN δCe δEu D-1H-2 88.78 79.71 9.07 8.79 8.02 1.04 0.86 D-4H-4 257.10 234.28 22.82 10.27 11.39 0.99 0.65 D-8H-2 175.56 158.78 16.77 9.47 10.88 0.98 0.75 D-12H-4 191.53 175.97 15.56 11.31 14.07 0.95 0.71 D-16H-5 215.29 198.11 17.17 11.54 13.88 0.94 0.69 D-20X-5 193.30 177.44 15.85 11.19 13.64 0.94 0.71 D-24X-4 197.41 178.84 18.56 9.64 11.20 0.97 0.74 D-28X-6 179.60 164.09 15.51 10.58 12.23 0.93 0.70 D-32X-2 193.21 175.67 17.54 10.01 12.01 0.93 0.73 D-36X-4 183.20 168.22 14.98 11.23 13.21 0.94 0.70 D-39X-3 190.21 173.55 16.66 10.42 12.28 0.93 0.70 D-44X-4 188.14 171.76 16.38 10.49 12.31 0.94 0.70 D-48X-2 161.01 147.14 13.87 10.61 11.15 0.93 0.69 D-52X-CC 170.43 155.89 14.54 10.72 13.08 0.95 0.73 D-55X-2 302.30 276.74 25.56 10.83 17.65 0.94 0.86 D-60X-1 186.99 169.73 17.26 9.83 11.01 0.96 0.72 E-7R-2 210.82 187.98 22.84 8.23 10.62 0.92 0.94 E-10R-2 211.52 187.40 24.11 7.77 10.04 0.92 0.94 E-17R-6 273.79 246.26 27.53 8.95 12.20 0.90 0.95 E-22R-6 188.80 168.03 20.77 8.09 10.97 0.91 0.92 E-26R-2 149.60 130.32 19.28 6.76 6.90 1.04 0.95 E-31R-5 192.79 173.56 19.23 9.02 13.21 0.90 0.94 E-33R-6 202.12 180.81 21.31 8.49 11.62 0.92 0.94 E-36R-3 217.53 194.36 23.16 8.39 9.61 0.91 0.73 E-36R-4 173.28 152.42 20.86 7.31 8.85 0.82 0.78 平均值 195.77 177.08 18.69 9.60 11.68 0.94 0.79 注:TFeO为总铁,UCC(upper continental crust)为大陆上地壳(McLennan, 2001). 表 3 U1431站点沉积物中Sr、Nd同位素含量
Table 3. Sr and Nd isotopic compositions of sediments at site U1431
Sr(10-6) 87Sr/86Sr 1σ SE Nd(10-6) 143Nd/144Nd 1σ SE εNd(0) D-1H-2 256.5 0.706 002 0.000 004 16.1 0.512 463 0.000 003 -3.4 D-4H-4 185.5 0.715 608 0.000 004 45.5 0.512 103 0.000 002 -10.4 D-8H-2 235.6 0.713 620 0.000 005 30.7 0.512 156 0.000 002 -9.4 D-12H-4 163.6 0.717 609 0.000 005 34.1 0.512 063 0.000 002 -11.2 D-16H-5 149.8 0.718 228 0.000 005 37.8 0.512 042 0.000 003 -11.6 D-20X-5 154.7 0.717 787 0.000 005 34.2 0.512 041 0.000 002 -11.6 D-24X-4 117.1 0.718 547 0.000 004 34.3 0.512 114 0.000 003 -10.2 D-28X-6 273.8 0.713 744 0.000 005 32.0 0.512 066 0.000 002 -11.2 D-32X-2 181.1 0.715 708 0.000 005 33.9 0.512 101 0.000 002 -10.5 D-36X-4 145.0 0.718 548 0.000 005 32.2 0.512 070 0.000 002 -11.1 D-39X-3 209.5 0.715 897 0.000 004 33.5 0.512 077 0.000 002 -10.9 D-44X-4 266.9 0.713 370 0.000 004 33.1 0.512 100 0.000 002 -10.5 D-48X-2 212.5 0.714 537 0.000 004 28.3 0.512 049 0.000 003 -11.5 D-52X-CC 275.4 0.713 091 0.000 004 30.1 0.512 106 0.000 003 -10.4 D-55X-2 149.0 0.708 449 0.000 004 59.6 0.512 686 0.000 002 0.9 D-60X-1 107.5 0.720 673 0.000 004 32.4 0.512 079 0.000 004 -10.9 E-7R-2 496.3 0.704 089 0.000 004 41.5 0.512 887 0.000 002 4.9 E-10R-2 407.1 0.704 760 0.000 003 41.7 0.512 884 0.000 003 4.8 E-17R-6 437.8 0.704 091 0.000 005 54.7 0.512 862 0.000 002 4.4 E-22R-6 436.1 0.704 431 0.000 005 38.3 0.512 852 0.000 002 4.2 E-26R-2 324.3 0.704 419 0.000 004 31.5 0.512 850 0.000 002 4.1 E-31R-5 244.0 0.704 579 0.000 003 37.1 0.512 863 0.000 002 4.4 E-33R-6 287.8 0.704 527 0.000 004 39.5 0.512 848 0.000 001 4.1 E-36R-4 130.2 0.713 103 0.000 004 33.0 0.512 309 0.000 002 -6.4 注:1σ SE为1倍标准偏差. -
Cai, G. Q., Peng, X. C., Zhang, Y. L., 2011. The Significances of and Advances in the Study of Sediment Sources in the South China Sea. Advances in Marine Science, 29(1): 113-121 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HBHH201101015.htm Cao, Y., Li, C. F., Yao, Y. J., 2017. Thermal Subsidence and Sedimentary Processes in the South China Sea Basin. Marine Geology, 394: 30-38. https://doi.org/10.1016/j.margeo.2017.07.022 Chen, C. H., Lee, T., 1990. A Nd-Sr Isotopic Study on River Sediments of Taiwan. Proceedings of the Geological Society of China, 33(4): 339-350. http://ntur.lib.ntu.edu.tw/handle/246246/108328 Chen, Z. X., Langmuir, C. H., 2018. Improving Data Precision and Accuracy With Short-Term and Long-Term Elemental Fractionation Corrections for Non-Matrix Matched Silicate Analysis by LA-ICP-MS. Goldschmidt 2018, Boston. Fang, Z., Zhao, J. X., McCulloch, M. T., 1992. Geochemical and Nd Isotopic Study of Palaeozoic Bimodal Volcanics in Hainan Island, South China: Implications for Rifting Tectonics and Mantle Reservoirs. Lithos, 29(1-2): 127-139. https://doi.org/10.1016/0024-4937(92)90037-Y Garçon, M., Chauvel, C., France-Lanord, C., et al., 2014. Which Minerals Control the Nd-Hf-Sr-Pb Isotopic Compositions of River Sediments?. Chemical Geology, 364: 42-55. https://doi.org/10.1016/j.chemgeo.2013.11.018 Ge, Q., Liu, J. P., Xue, Z., et al., 2014. Dispersal of the Zhujiang River (Pearl River) Derived Sediment in the Holocene. Acta Oceanologica Sinica, 33(8): 1-9. https://doi.org/10.1007/s13131-014-0407-8 Hu, D. K., Clift, P. D., Böning, P., et al., 2013. Holocene Evolution in Weathering and Erosion Patterns in the Pearl River Delta. Geochemistry, Geophysics, Geosystems, 14(7): 2349-2368. https://doi.org/10.1002/ggge.20166 Huang, C. Y., Yuan, P. B., Tsao, S. J., 2006. Temporal and Spatial Records of Active Arc-Continent Collision in Taiwan: A Synthesis. Geological Society of America Bulletin, 118(3-4): 274-288. https://doi.org/10.1130/b25527.1 Jonell, T. N., Clift, P. D., Hoang, L. V., et al., 2017. Controls on Erosion Patterns and Sediment Transport in a Monsoonal, Tectonically Quiescent Drainage, Song Gianh, Central Vietnam. Basin Research, 29: 659-683. https://doi.org/10.1111/bre.12199 Knittel, U., Defant, M. J., Raczek, I., 1988. Recent Enrichment in the Source Region of Arc Magmas from Luzon Island, Philippines: Sr and Nd Isotopic Evidence. Geology, 16(1): 73-76. https://doi.org/10.1130/0091-7613(1988)0160073:reitsr>2.3.co;2 doi: 10.1130/0091-7613(1988)0160073:reitsr>2.3.co;2 Lan, C. Y., Lee, C. S., Shen, J. J., et al., 2002. Nd-Sr Isotopic Composition and Geochemistry of Sediments from Taiwan and Their Implications. Western Pacific Earth Science, 2(2): 205-222 http://www.researchgate.net/publication/281263130_Nd-Sr_isotopic_composition_and_geochemistry_of_sediments_from_Taiwan_and_their_implications Li, C. F., Lin, J., Kulhanek, D. K., et al., 2015. Proceedings of the International Ocean Discovery Program, 349: South China Sea Tectonics. International Ocean Discovery Program, College Station. https://doi.org/10.14379/iodp.proc.349.101.2015 Li, C. F., Xu, X., Lin, J., et al., 2014. Ages and Magnetic Structures of the South China Sea Constrained by Deep Tow Magnetic Surveys and IODP Expedition 349. Geochemistry, Geophysics, Geosystems, 15(12): 4958-4983. https://doi.org/10.1002/2014gc005567 Li, P. Y., Liu, Z. F., 2018. Characteristics and Significance of Trace Fossils in Late Miocene Deep-Sea Volcaniclastic Sediments in the Central Basin of South China Sea. Earth Science, 43(S2): 203-213 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX2018S2016.htm Liu, C., Clift, P. D., Murray, R. W., et al., 2017a. Geochemical Evidence for Initiation of the Modern Mekong Delta in the Southwestern South China Sea after 8 Ma. Chemical Geology, 451: 38-54. https://doi.org/10.1016/j.chemgeo.2017.01.008 Liu, J. G., Xiang, R., Chen, M. H., et al., 2011. Influence of the Kuroshio Current Intrusion on Depositional Environment in the Northern South China Sea: Evidence from Surface Sediment Records. Marine Geology, 285(1-4): 59-68. https://doi.org/10.1016/j.margeo.2011.05.010 Liu, J. G., Xiang, R., Chen, Z., et al., 2013. Sources, Transport and Deposition of Surface Sediments from the South China Sea. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 71: 92-102. https://doi.org/10.1016/j.dsr.2012.09.006 Liu, Z. F., Colin, C., Huang, W., et al., 2007. Climatic and Tectonic Controls on Weathering in South China and Indochina Peninsula: Clay Mineralogical and Geochemical Investigations from the Pearl, Red, and Mekong Drainage Basins. Geochemistry, Geophysics, Geosystems, 8(5): Q05005. https://doi.org/10.1029/2006GC001490 Liu, Z. F., Li, C. F., Kulhanek, D., 2017b. Preface: Evolution of the Deep South China Sea: Integrated IODP Expedition 349 Results. Marine Geology, 394: 1-3. https://doi.org/10.1016/j.margeo.2017.11.009 López, J. M. G., Bauluz, B., Fernández-Nieto, C., et al., 2005. Factors Controlling the Trace-Element Distribution in Fine-Grained Rocks: The Albian Kaolinite-Rich Deposits of the Oliete Basin (NE Spain). Chemical Geology, 214(1-2): 1-19. https://doi.org/10.1016/j.chemgeo.2004.08.024 McLennan, S. M., 2001. Relationships between the Trace Element Composition of Sedimentary Rocks and Upper Continental Crust. Geochemistry, Geophysics, Geosystems, 2(4): 203-236. https://doi.org/10.1029/2000GC000109 McLennan, S. M., Hemming, S., McDaniel, D. K., et al., 1993. Geochemical Approaches to Sedimentation, Provenance, and Tectonics. Geological Society of America, Special Paper, 285: 21-40. https://doi.org/10.1130/SPE284-p21 Nesbitt, H. W., Markovics, G., Price, R. C., 1980. Chemical Processes Affecting Alkalis and Alkaline Earths during Continental Weathering. Geochimica et Cosmochimica Acta, 44(11): 1659-1666. https://doi.org/10.1016/0016-7037(80)90218-5 Nesbitt, H. W., Young, G. M., 1982. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature, 299(5885): 715-717. https://doi.org/10.1038/299715a0 Nesbitt, H. W., Young, G. M., 1984. Prediction of Some Weathering Trends of Plutonic and Volcanic Rocks Based on Thermodynamic and Kinetic Considerations. Geochimica et Cosmochimica Acta, 48(7): 1523-1534. https://doi.org/10.1016/0016-7037(84)90408-3 Nesbitt, H. W., Young, G. M., 1989. Formation and Diagenesis of Weathering Profiles. The Journal of Geology, 97(2): 129-147. https://doi.org/10.1086/629290 Shao, L., Cui, Y. C., Stattegger, K., et al., 2019. Drainage Control of Eocene to Miocene Sedimentary Records in the Southeastern Margin of Eurasian Plate. GSA Bulletin, 131(3-4): 461-478. https://doi.org/10.1130/b32053.1 Shao, L., Qiao, P. J., Pang, X., et al., 2008. Nd Isotopic Variations and Its Implications in the Recent Sediments from the Northern South China Sea. Chinese Science Bulletin, 54(2): 311-317. https://doi.org/10.1007/s11434-008-0453-8 Su, M., Xie, X. N., Wang, Z. F., et al., 2013. Sedimentary Evolution of the Central Canyon System in Qiongdongnan Basin, Northern South China Sea. Acta Petrolei Sinica, 34(3): 467-478 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB201303008.htm Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publication, Oxford. https://doi.org/10.1016/0031-9201(86)90093-2 Tong, S. Q., 2007. Elemental Geochemistry of Surface Sediments in Pearl River, Red River and Mekong River Basin (Dissertation). Tongji University, Shanghai (in Chinese with English abstract). Tu, K., Flower, M. F. J., Carlson, R. W., et al., 1992. Magmatism in the South China Sea: 1. Isotopic and Trace-Element Evidence for an Endogenous Dupal Mantle Component. Chemical Geology, 97(1-2): 47-63. https://doi.org/10.1016/0009-2541(92)90135-R Wang, J., Zhao, M. H., Qiu, X. L., et al., 2016. 3D Seismic Structure of the Zhenbei-Huangyan Seamounts Chain in the East Sub-Basin of the South China Sea and Its Mechanism of Formation. Geological Journal, 51: 448-463. https://doi.org/10.1002/gj.2781 Wang, P. X., Jian, Z. M., 2019. Exploring the Deep South China Sea: Retrospects and Prospects. Science in China (Sreies D), 49(10): 1590-1606 (in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=JDXG201910001 Wang, Y. J., Han, X. Q., Luo, Z. H., et al., 2009. Late Miocene Magmatism and Evolution of Zhenbei-Huangyan Seamount in the South China Sea: Evidence from Petrochemistry and Chronology. Acta Oceanologica Sinica, 31(4): 93-102 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SEAC200904010.htm Wei, G. J., Liu, Y., Ma, J. L., et al., 2012. Nd, Sr Isotopes and Elemental Geochemistry of Surface Sediments from the South China Sea: Implications for Provenance Tracing. Marine Geology, 319-322: 21-34. https://doi.org/10.1016/j.margeo.2012.05.007 White, W. M., Patchett, J., 1984. Hf-Nd-Sr Isotopes and Incompatible Element Abundances in Island Arcs: Implications for Magma Origins and Crust-Mantle Evolution. Earth and Planetary Science Letters, 67(2): 167-185. https://doi.org/10.1016/0012-821x(84)90112-2 Yin, S. R., Li, J. B., Ding, W. W., et al., 2020. Sedimentary Filling Characteristics of the South China Sea Oceanic Basin, with Links to Tectonic Activity during and after Seafloor Spreading. International Geology Review, 62(7-8): 887-907. https://doi.org/10.1080/00206814.2018.1522603 Zhang, D. J., Zhang, Y. Z., Shao, L., et al., 2017. Sedimentary Provenance in the Central Canyon of Qiongdongnan Basin in the Northern South China Sea. Natural Gas Geoscience, 28(10): 1574-1581 (in Chinese with English abstract). http://www.researchgate.net/publication/322294402_Sedimentary_provenance_in_the_Central_Canyon_of_Qiongdongnan_Basin_in_the_northern_South_China_Sea Zhang, G. L., Sun, W. D., Seward, G., 2018. Mantle Source and Magmatic Evolution of the Dying Spreading Ridge in the South China Sea. Geochemistry, Geophysics, Geosystems, 19(11): 4385-4399. https://doi.org/10.1029/2018GC007570 Zhao, M., Shao, L., Liang, J. S., et al., 2015. No Red River Capture since the Late Oligocene: Geochemical Evidence from the Northwestern South China Sea. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 122: 185-194. https://doi.org/10.1016/j.dsr2.2015.02.029 Zhao, M. H., Du, F., Wang, Q., et al., 2018. Current Status and Challenges for Three-Dimensional Deep Seismic Survery in the South China Sea. Earth Science, 43(10): 3749-3761 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201810034.htm 蔡观强, 彭学超, 张玉兰, 2011. 南海沉积物物质来源研究的意义及其进展. 海洋科学进展, 29(1): 113-121. https://www.cnki.com.cn/Article/CJFDTOTAL-HBHH201101015.htm 李平原, 刘志飞, 2018. 南海中央海盆晚中新世深海火山碎屑沉积的遗迹学特征及意义. 地球科学, 43(S2): 203-213. doi: 10.3799/dqkx.2018.130 苏明, 解习农, 王振峰, 等, 2013. 南海北部琼东南盆地中央峡谷体系沉积演化. 石油学报, 34(3): 467-478. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201303008.htm 童胜琪, 2007. 珠江、红河及湄公河流域表层沉积物元素地球化学研究(硕士学位论文). 上海: 同济大学. 汪品先, 翦知湣, 2019. 探索南海深部的回顾与展望. 中国科学(D辑), 49(10): 1590-1606. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201910006.htm 王叶剑, 韩喜球, 罗照华, 等, 2009. 晚中新世南海珍贝-黄岩海山岩浆活动及其演化: 岩石地球化学和年代学证据. 海洋学报, 31(4): 93-102. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC200904010.htm 张道军, 张迎朝, 邵磊, 等, 2017. 琼东南盆地中央峡谷沉积物源探讨. 天然气地球科学, 28(10): 1574-1581. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201710012.htm 赵明辉, 杜峰, 王强, 等, 2018. 南海海底地震仪三维深地震探测的进展及挑战. 地球科学, 43(10): 3479-3761. doi: 10.3799/dqkx.2018.573